بهبود الگوریتم ساختاری مونت کارلوی زنجیر مارکوف در مدل‌های چندسطحی با متغیر پاسخ نرمال

عاطفه فرخی، موسی گل علی‌زاده
گروه آمار، دانشگاه تربیت مدرس

تاریخ دریافت: 16/3/1389
تاریخ آخرین پذیرش: 23/7/1389

چکیده: مدل‌های چندسطحی در علوم کاربردی شامل علوم اجتماعی، جامعه‌شناسی، پزشکی و اقتصاد برای تحلیل داده‌های همبسته مورد استفاده قرار می‌گیرند. روش‌های متفاوتی برای برآورده‌اند مدل‌های با متغیر پاسخ نرمال وجود دارند. در این مقاله برای بهکار گیری روشی پیش‌آمده در تعیین الگوریتم مونت کارلوی زنجیر مارکوف استفاده می‌شود که قابلیت ساده‌اش و باعث حذف همبستگی بین نمودارهای همبستگی‌سازی شده برای پارامترهای ناپی و خطاهای متناسب به گروه‌ها می‌شود. جهت بیشتر استفاده از الگوریتم کواریانس بردار خطای که به‌اشکال مختلفی به چالش مانده‌است، به کاربرد کواریانس پیشنهاد می‌شود. سپس عملکرد این روش‌ها در مطالعه شبیه‌سازی و مثالی کاربردی مورد آزمایش قرار می‌گیرد.

واژه‌های کلیدی: داده‌های چندسطحی، مدل‌های عرض از میدان تصادفی، الگوریتم مونت کارلوی زنجیر مارکوف، تجزیه چولسکی

آدرس الکترونیک: موسی گل علی‌زاده، golalizadeh@modares.ac.ir

کد موضوعاتی نهایی ریاضی (۹۴۰۳): ۲۴۳۱۶ و ۶۷۱۹۹
بهره‌کریک‌سوم SMCMC در مدل‌های چندضلعی

1. مقدمه

معمولاً بررسی‌های آماری روابط بین متغیرهای تیپ‌پیش و ولسنت به‌صورت ترکیب‌های مختلف از مشاهدات کمی و کیفی باشد. در قابلیت رگرسیون تحلیل واریانس و تحلیل‌های کواریانس صورت می‌گیرد. یکی از فرض‌های اساسی در کاربرد این مدل‌ها استقلال آماری بین مشاهدات است. گاهی اوقات این فرض برای موضوع مورد مطالعه صادق نیست، در نتیجه به‌کار گیری مدل‌های رگرسیونی متداول دارای اشکال می‌باشد. یعنی نمونه پیچیده پیشنهاد (2005) نشان داده‌نامه‌ی کینگ فرض نمایش‌گکی بین مشاهدات منجر به کمی‌ارویی خاتمی برآورد ضرایب رگرسیونی می‌شود. مدل‌های وارای موضوع غلبه‌اند. در ادامه مثال، در بررسی میزان کلسترول خون اعدادی بیمار، می‌توان نتیجه‌دانست شاهدی نسبی بین وضعیت بیمارانی که تحت درمان یک پرسرکت هستند و وجود داشته باشند (نوابیک، 2005). مدل مناسب تحلیل داده‌های مایل به توالی؛ مدل چندضلعی است. ویژگی اصلی داده‌های چندضلعی خصوصیت گرونگینی آنرا است که در مدل‌های آماری لحاظ می‌شود.

روش استنباط آماری زیادی راجع به پارامترهای مدل‌های چندضلعی معرفی شده است (گلدنگی، 1999). تابع معنی‌شناخته‌سازی می‌باشد. در این مدل بهترین پیش‌بینی می‌شود. نظریه روش‌های پیش‌بینی بسیار مبهم و به‌ویژه روش‌های مولتی‌کووک (MCMC) کاربردی‌ترین مدل‌هاست. مدل‌های MCMC یا مدل‌های تصادفی (SMMCMC) نیز به‌کاربرده شده‌اند. به‌طور مختلط کمپیوتری مورد مطالعه قرار داده‌اند.

برای برآورد کردن پارامترهای مدل چندضلعی با روش‌های MCMC و برطرف کردن مشکل همبستگی نمونه‌های تولید شده سرچشمه و همکاران (2003) روشی بنام روش باستحکار معنی کارلو زنجیره مارکوف (SMCMC) را پیشنهاد کردند.

1 Markov Chain Monte Carlo
2 Structured Markov Chain Monte Carlo
عاطفه فرخی، موسی گل علیزاده

این روش کارایی بسیار خوبی در مقایسه با روش‌های بازپارامتری داشته و در عین حال از ساختار ساده‌ای بر خوردار است و به‌طوری که اکثر مدل‌های جهیزی SMCMC را می‌توان در آن گنجانند. اما نکته‌هایی شامل این روش مدل‌های محاسباتی ناشی از برگ بودن ماتریس کوارباینز مدل تغییر پذیر است.

در بخش دوم این مقاله روش سیستم‌های SMCMC به اختصار معرفی می‌شود. سپس در بخش سوم اینجا راهکارهایی برای بهبود روش پیشنهاد شده و به‌منظور تشریح بهتر مطالعه دو مدل عرض از مبدأ تصادفی در نظر گرفته می‌شود. در بخش چهارم با نمایش سازی و یک مثال کاربردی روش‌های موجود و پیشنهاداتی نیز مطرح می‌شود.

مقایسه نتیجه‌گیری در بخش پنجم از آن اخواه شد.

2. روش ساختاری مونت کارلی زنجیر مارکوف

در روش‌های تعیین زمان همگراپی اخذ نمودن‌های تقیبی مستقل، کاهش پرواید حذف بروز از بروز و خصوصیات کارایی دیگر زنجیر از مشاهده‌های بسیار اساسی به‌شمار می‌رود. برای اینکه بتوان نمودن‌های تقیبی مستقل از تویپ هدف تولید کرد لازم است نحوه‌شکل زنجیر مارکوف، زمان همگراپی آن کاهش همبستگی نمودن‌های حاصل از زنجیر و میزان‌های دیگر مورد توجه قرار گیرد.

مطالعه‌های متعددی در پرسی این مطالعه چاپ شده‌اند. به‌عنوان مثال می‌توان به هیل و اسمیت (۱۹۹۲)، گیبلنکس و رایفرت (۱۹۹۶) اشاره کرد. در دایی روش‌های MCMC مووضع بهبود مزایای دستیابی به هم‌گراپی از طریق کاهش همبستگی نمودن‌های حاصل از زنجیر و در عین حال رضایت برآورد دقت‌کننده‌های شدید نا معنی‌دارند این به‌منظور تحقیقاتی بیشتری به عمل آورید. روش‌های بازپارامتری ۲ یکی از نتایج این فعالیت‌ها بوده است. روش‌های بازپارامتری شامل روش‌های متعامد سازی (هیل و اسمیت، ۱۹۹۲), روش‌های مرکزی کردن سلسله مراتبی.
در مدل‌های جندسطحی SMC-MCMC گفته شده‌است (گلفند و همکاران ۱۹۹۵) و روشهای مشابهی با سطح‌های پارامترهای مدل‌های چندسطحی روش جدیدی تحت عنوان SMC-MCMC مطرح شده که شامل کاهش زیادی مقدار دگرگونی مدل‌های فرضی است. گلفند و همکاران ۱۹۹۵ در حوزه‌های انتفاعی از مدل‌های واریانس و بهبود سطح‌های در SMC-MCMC گفته که کاهش زیادی تعدادی از مدل‌های انتفاعی و همچنین مدل‌های قضایی یا انتفاعی بین مدل‌های دیگر بحث محور شده است.

اصول تغییر مدل‌های جندسطحی، مدل‌یابی اثر تشکیل‌دهنده نیز منطقه متعادل

به‌صورت

\[y_{ij} = \beta_i + \epsilon_{ij}, \quad i = 1, \ldots, n_i; \quad j = 1, \ldots, J \]

امتیاز که در آن انتی‌سیستم‌ها و زیج ترتیب غیرگون سطح اول و سطح دوم، پارامتر ثابت بیانگر عرض از میدان و \(r_{ij} \) و \(\epsilon_{ij} \) مستقل و دارای توزیع نرمال با میانگین صفر و واریانس‌های برابری بنتی‌بندی مدل (۱) مدل عرض از میدان تشکیل‌دهنده نامیده

می‌شود. نمادگذاری مدل‌های جندسطحی در این مقاله پایه‌ای بر اساس نمادگذاری های گلدنستاین (۱۹۹۹) است که علاوه بر مطالعه آنها بر این ساختار پارامترهای مدل راه انداز کرده است. برآورد نسبی پارامترهای این مدل و مدل‌های جندسطحی دیگر در براون (2009) آمده است.

\(^1\) Parameter expansion
با پیروی از سیرجنت و همکاران (2002) و به منظور بهکارگیری روش

قرار داده شده می‌شود به صورت

\[y_{ij} = \beta_{si}^j + \epsilon_{ij} \]

\[\epsilon_{ij} = -\beta_{si}^j + \beta_{s}^i + u_{ij}. \] \hspace{1cm} (2)

حال به ازای \(i = 1, \ldots, N \) و \(j = 1, \ldots, n_j \) را می‌توان به صورت پدیده

\[
\begin{pmatrix}
 y_{11} \\
 y_{12} \\
 \vdots \\
 y_{n_j, J}
\end{pmatrix} =
\begin{pmatrix}
 1_{n_1} \\
 0_{n_2} \\
 \vdots \\
 0_{n_J}
\end{pmatrix}
\begin{pmatrix}
 \beta_{s1} \\
 \beta_{s2} \\
 \vdots \\
 \beta_{sJ}
\end{pmatrix}
+
\begin{pmatrix}
 \epsilon_{11} \\
 \epsilon_{12} \\
 \vdots \\
 \epsilon_{n_j, J}
\end{pmatrix}
\] \hspace{1cm} (3)

نوشت، که در آن \(y_{ij} \) بردار مقدارهای \(q \) بعدها از توزیع \(q_1 \) بردار مقدارهای \(q \) بعدها از توزیع \(q \) ماتریس همبستگی می‌باشد. این ماتریس همبستگی \(J \) است. واضح است برای \(J \) را می‌توان به صورت ماتریسی

\[Y = X \Theta + E \] \hspace{1cm} (4)

نوشت، که در آن \(Y = (y_{11}, \ldots, y_{n_j, J}, 0_J)^T \) بردار متغیرهای وابسته \(X = \left(\text{diag} \{1_{n_1}, \ldots, 1_{n_J} \}, 0_N \right) \) ماتریس طرح، \(\Theta = (\beta_{s1}, \ldots, \beta_{sJ}, \beta_s)^T \) بردار پارامترهای مدل و \(E = (\epsilon_{11}, \ldots, \epsilon_{n_j, J}, u_1, \ldots, u_J)^T = (\epsilon, u)^T \) بردار خطاهای وابسته مدل جدید با مدل ساختاری نامیده می‌شود. واضح است بردار خطاهای از رابطه (4) دارای توزیع نرمال چند متغیری \(\Sigma_{N+i} = \sum \) با بردار میانگین \(\mu \) و ماتریس کوواریانس \(0_{N+i} \) ماتریسی کواریانس

\[
\Sigma =
\begin{pmatrix}
 \text{Cov}(\epsilon) \\
 0_{J \times N}
\end{pmatrix}
\begin{pmatrix}
 \text{Cov}(u)
\end{pmatrix}
=
\begin{pmatrix}
 \sigma^2_{\epsilon} I_N & 0_{N \times J} \\
 0_{J \times N} & \sigma^2_u I_N
\end{pmatrix}.
\]
به‌عنوان مسئولیت SMC مدل‌های جدیدی است (رنجر، ۱۹۹۵). به‌کمک اطلاعات موجود و در نظر گرفتن پیشین ناگهانی
به‌طور جزئی، تغییرات برای بردازه ۱ + J به‌دست می‌آید.
کامل آن عبارت است از

\[
\Theta(Y, X, \Sigma) \sim M N \left((X^T \Sigma^{-1} X)^{-1}(X^T \Sigma^{-1} Y), (X^T \Sigma^{-1} X)^{-1}\right)
\]

به‌کمک الگوریتم SMC مدل‌های جدیدی قابلیت استفاده از توزیع شرطی
کاملاً \(\Theta\) جدولی کود می‌تواند از طریق آن به‌دست‌آید. برای اجرا یافتن به‌دست‌آمدهای \(\beta_0\) و
\(\beta_0, \ldots, \beta_0\)

روش

هم‌نهایی نوعی است که در پارامتر \(\Theta\) عمل می‌کند. به‌کمک
حالتی که به‌دست می‌آید، توزیع \(\Sigma_i\) و \(\Sigma_j\) چون نغییری و با استفاده از روش‌های
نمونه‌گیری گیژر و از توزیع‌های کاملاً آن‌ها که گام‌ها یا گام‌گان است لحاظ
جویانه پرداخت. \(\Gamma(u, h_u)\) به‌عنوان مثال برای مدل (۱) با انتخاب بیشین
\(\Gamma(\beta, h_\beta)\) یا توزیع‌های شرطی کاملاً به‌دست‌آمده

\[
\Gamma(N(2a, b - \sum_i e_i y_i + \sum_j x_j y_j) / 2 + \sum_i x_i y_i / \sum_j x_j y_j)
\]

که در آن \(\beta - h_\beta\) + \(y_i - e_i y_i = y_i - e_i y_i\) این موضوع برای مدل‌های دیگری که در ادامه
مطالعه می‌شوند نیز صادق است یعنی که تغییرات جزئی در پارامترهای توزیع‌های
گام‌ها رخ خواهد داد. به‌منظور جلوگیری از افزایش حجم مطالعه ممکن است این
جنبات بیشتر راجع به انتخاب توزیع‌های بیشین و ناشی آن‌ها از توزیع‌های بیشین
شرطی کاملاً پارامترهای در گیر مدل خودداری می‌شود. خواندن علاقوسی به مطالعه
بیشتر در این زمینه به براون و درایر (۲۰۰۲) و براون (۲۰۰۹) ارج داده می‌شود.

در روشهای معمول

 contracting Function

 به‌کمک روش SMC

 این است که به‌دنبال به‌دست‌آوردن شدن توزیع پارامترهای \(\beta_0\) و \(\beta_0, \ldots, \beta_0\)
یافتن کمیت می‌باشد MCMC

عاطفه فرخی، موسی گل علیزاده

(سیرجت و همکاران، ۱۹۹۹)، به عبارتی دیگر با بهره‌رست نمودن نیز می‌توان این پارامترها به‌صورت یک دستگاه کاهش می‌یابد و لذا شکلی به‌طور ترکیبی (ESS) می‌شود. پس از این امر خرید موجب‌افراشی‌های لحاظاری‌های میانگین شود.

می‌شود. این نکته در ادامه در مثال‌های شبیه‌سازی و کاربردی منعکس خواهد شد.

تعیین مدل (۱) مدل عرض از میان گروه‌های به‌صورت متغیرهای مستقل \(x_{ij} \) است. مدل چند متغیری عرض از میان گروه‌های به‌صورت نهایی یک متغیر مستقل \(y_{ij} \) عبارت است از

\[
y_{ij} = \beta_0 + u_j + x_{ij}\beta_1 + e_{ij}
\]

فرض های مدل (۶) همان فرض های مدل (۱) می‌باشد جز اینکه در مدل اخیر پارامتر ثابت اضافی \(\beta_1 \) بیانگر شبب ناتی مدل است (گلدستاین، ۱۹۹۹).

برای یکگاهی روش SMCMC برای رابطه (۶) رابطه در معادله

\[
y_{ij} = \beta_{0j} + x_{ij}\beta_1 + e_{ij}
\]

\[
\sigma = -\beta_{0j} + \beta_0 + u_j.
\]

نوشته و سپس به ازای کلیه مشاهدات آنها به‌صورت برداری

\[
\begin{pmatrix}
 y_{11} \\
 \vdots \\
 y_{n_{1}j} \\
 0_j
\end{pmatrix} = \begin{pmatrix}
 1_{n_1} & 0_{n_1} & \cdots & 0_{n_1} & x_1 & 0_{n_1} \\
 1_{n_2} & 0_{n_2} & \cdots & 0_{n_2} & x_2 & 0_{n_2} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0_{n_j} & \cdots & 1_{n_j} & 0_{n_j} & x_j & 0_{n_j} \\
 -I_j & 0_j & \cdots & 0_j & 1_j
\end{pmatrix} \begin{pmatrix}
 \beta_{11} \\
 \vdots \\
 \beta_{1j} \\
 \beta_0
\end{pmatrix} + \begin{pmatrix}
 e_{11} \\
 \vdots \\
 e_{n_{1}j} \\
 u_j
\end{pmatrix}
\]

می‌توانیم، چکی در آن \(x_0 = [x_{ij}, x_{ij}, \ldots, x_{ij}]^T \) می‌تواند به‌صورت یک دستگاه طرح \(X = X\Theta + E \) با ماتریس طرح توجه شود. لذا ماتریس طرح \(X \) توزیع شرطی کامل \(\Theta \) همان توزیع (۵) خواهد بود، جز اینکه ماتریس طرح تغییر خواهد کرد. به عنوان مثال، با آن به مدل جدید و رابطه (۵) معکوس ماتریس

\(^{v} \text{ Effective Sample Size} \)
بهبود الگوریتم SMC-MCMC در مدل‌های چندسطحی

کواریانس توزیع شرطی Θ به شرط معادلات (X, Y, F, Σ) به‌صورت زیر خواهد بود:

$$
X^T\Sigma^{-1}X = \begin{pmatrix}
\frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} & \cdots & \frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} \\
\frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} & \cdots & \frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} \\
\frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} & \cdots & \frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} \\
\frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} & \cdots & \frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} \\
\frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1} & \cdots & \frac{1}{\sigma^2_1} & \frac{1}{\sigma^2_1}
\end{pmatrix}
$$

مجددا برآوردهای پارامترهای $\Theta = (\beta_1, \ldots, \beta_n, \beta_0)^T$ گوسی برای توزیع (5) به‌صورت سطحی X به‌دست می‌آورد. همچنین σ_0^2 و σ_1^2 با روش مشابه توزیع گوسی و به‌کمک نموپارامترهای θ تولید شده از توزیع وارون G_1 برآورده می‌شوند.

به‌معنای برآوردهای الگوریتم SMC-MCMC برای مدل‌های غربال استفاده می‌کنند. و همچنین مدل‌های چندسطحی دیگر استفاده می‌شود. به‌صورت معادله‌ی رگرسیونی $\hat{X} = X\Theta + E$ سیستم سیستم را که نوشتاری به سیستم را می‌گیرد. سپس به‌کمک روش‌های Θ برآورده‌ای از پارامترهای مدل به‌کمک روش‌های نمونه‌برداری استفاده می‌شود. در روش G_1 به‌دلیل تعیین مدل‌های معادلاتی بین پارامترهای نتیجه و خطاهای SMC-MCMC مربوط به سطوح بالا کم خواهد بود. اما نکته مهم روش G_1 است که با استفاده از ماتریس X که به‌دلیل اینکه به‌طور مندون به‌کمک روش‌های تعدادی از الگوریتم به‌کمک روش‌های متغیرهای مسئله و لحاظ نمونه‌بندی‌های مختلفی چندسطحی به‌کار بردن $X^T\Sigma^{-1}X$ به‌کمک شده و محاسبه آن به‌صورتی از معادلات مربوط به تولید نمونه برای پارامترهای را به‌خود اختصاص خواهد داد.

در مقاله حاضر، برای رفع مشکلاتی شبیه آنچه در بالا به آنها نسبت به SMC-MCMC روش پیشنهاد کاربرای آنها نسبت به روش مورد ارزیابی قرار می‌گیرد. روش‌های پیشنهادات به‌همراه روش‌های SMC-MCMC است که توجه به‌این مطالعه نشان می‌دهد. مدل‌های دیگر چندسطحی مثل مدل شبیه تصادفی مورد مطالعه قرار گرفته است. یکی از
عاطفه فرخی، موسی گلعلیزاده

دلایل این امر عدم بهبود مناسب روش‌های پیشنهادی برای مدل‌های دیگر شامل مدل شبیه‌سازی پوسته است. لذا امید می‌رود در تحقیقات آتی این موضوع نیز با راهکار‌های دیگر مطالعه قرار گیرد.

3. بهبود روش ساختاری مونت کارلو زنجیر مارکوف

به دلیل افزایش بیش از حد بعد ماتریس کوارانس به روش SMCMC استفاده از تجزیه ماتریس است. بهبود روش SMCMC در برخی مسائل مانند طرح‌های دارمانی و اعمال ماتریس به روش SMCMC و ترکیب آن با ماتریس طرح ناشی می‌شود. یک راه حل مناسب

روش‌های مختلفی برای تجزیه یک ماتریس وجود دارد که هر کدام دارای محاکسه و معاوضه خاص خود هستند. اما تجزیه چولسکی به دلیل سرعت بی‌نظیری مناسبات نسبت به تجزیه‌های دیگر ارجحیت دارد (میکر، 2000). اگر A ماتریسی منفرد معین باشد، تجزیه چولسکی آن به صورت

است که در آن

MATLAB با مثالی است، نشانه که برای مدل‌های این مقدار شاید تجزیه‌های دیگر ساختار مناسب‌تر برای معمولات ماتریس کوارانس این دسته و بدون راهگاهی روی به یک با

استفاده از این روش بهبود قابل ملاحظه‌ای در دقت و زمان همگرایی روی ایجاد نخواهد کرد.

میان این نکته ضروری است که برای پیش‌سازی روش‌های بهبود یافته SMCMC ابتدا با نرم‌افزار Maple نسبت به چولسکی معکوس ماتریس‌های R مورد نیاز محاسبه و سپس مدل‌پذیری و دستیابی به برآوردگاه مورد نیاز با نرم‌افزار

سی‌ویک. ۲۹ همچنین برای پیش‌سازی مدل‌های چندسطحی تعدادی از

کتاب‌خانه‌های ضروری شامل R در نرم‌افزار آماری که در هر دوی

MASS و nlme گرفته شده است.
1.3. تجزیه چولسکی وارون ماتریس کوارانتس پارامترهای بلک بندی شده

در این بخش برای بهبود روش SMCMC، از تجزیه چولسکی ماتریس کوارانتس استفاده می‌شود. از آنجا که مختصاتی ماتریس کوارانتس پارامترهای بلک کمپنبندی شده زمانی است که با استفاده از تجزیه چولسکی مشکل افزایش بعد ماتریس کوارانتس متفاوت می‌شود. روی پیشنهادی برای استفاده از مدل مطرح شده در بخش قبل به کار گرفته شده‌است.

با توجه به مدل عرض از می‌دانی تصادفی (1) و پیشنهاد (5) تجزیه چولسکی:

وارون ماتریس کوارانتس مدل ساختاری معنی $X^T \Sigma^{-1} X$ عبارت است از

$$\Sigma^{-1} T = \begin{pmatrix} aI_{J+1} & \frac{1}{\sigma_y} \frac{1}{\sigma_c} \\ 0_J & 0 \end{pmatrix}^T \begin{pmatrix} aI_{J+1} & \frac{1}{\sigma_y} \\ 0_J & \frac{1}{\sigma_c} \end{pmatrix}$$

که در آن

$$a = \sqrt{\frac{\sigma_y^2 + \sigma_c^2}{\sigma_y^2 \sigma_c^2}}.$$

با توجه به این نشانی و رابطه (5) به نظر می‌رسد مختصاتی می‌تواند به اجرای الگوریتم خیلی ساده‌تر از حالت معنی‌آلود آن (عمل استفاده از تجزیه چولسکی SMCMC) باشد. به ویژه با جایگذاری تجزیه چولسکی ماتریس کوارانتس در رابطه (5) ماتریس کوارانتس توزیع شرطی کاملاً به صورت 1-هایی کاملاً به صورت

$$\Theta|Y, X, \Sigma) \sim MVN\left((\Sigma^* \Sigma^* - 1) (\Sigma^* T \Sigma^{-1} T)^{-1} (\Sigma^* T \Sigma^{-1} T), (\Sigma^* \Sigma^* - 1)^{-1}\right)$$

نگیرید خواهید کرد که با توجه به رابطه (8) مختصاتی وارونبنش ساده‌تر خواهد شد. از آنجا که عبارت $W^T \Sigma^{-1} W$ برای حاصل ضرب تعدادی مقادیر معلوم در $1/\sigma_x^2$ است، با مختصاتی مقادیر ثابت آن خارجی از نکاور الگوریتم SMCMC می‌توان نشان داد که می‌توان با جایگذاری N به تعداد $\Sigma^* \Sigma^* - 1$ عبارت است از

$$\frac{1}{\sigma_x^2} \left(\sum_{i=1}^{M} y_{ij}^2, \sum_{i=1}^{M} y_{ij} \sum_{i=1}^{M} y_{ij} \right)^T.$$
حال نحوه به کارگیری روش SMCMC در مدل عرض از مبدا تصادفی و با حضور متغیر تبیینی نشانده می‌شود. اضافه‌ی مدل به‌منظور بررسی واقعیت که
تعداد متغیرهای تبیینی می‌شود. نابرابری تقریب تعمیمی است. ضریب کنندهٔ تجزیه
چولسکی ماتریس $X^T X$ در مدل چندسطحی عرض از مبدا تصادفی و با
حضور متغیر تبیینی در مدل هایی که تعداد واحدهای درون سطوح ناپایدار باشند
دارای فرم استانداردی نیست. به عبارتی، دیگر تجزیه چولسکی به تعداد واحد
هر گروه دارای ساختار متغیری است. لذا نمی‌توان یک دستورالعمل سرآسانی را
برای چنین مدل‌هایی پیشنهاد نمود. از این رو برای آشکاری بیشتر با نحوهٔ اجرای روش
و در عین حال سادگی محاسبات آنی واحدهای سطوح متغیر مدل
چندسطحی عرض از مبدا تصادفی و با حضور متغیر تبیینی به صورت بر اساس
گرفته می‌شود. چنین طرحی به طرح متعادل معروف است.

وارون ماتریس کوارانس سطوح چندسطحی عرض از مبدا تصادفی و با حضور
متغیر مستقل در (7) آماده است. با لحاظ نمودن فرض طرح متعادل، تجزیه
چولسکی ماتریس (7) عبارت است از

$$
\Sigma \Sigma^T = \left(\begin{array}{c c c c}
\frac{f_1 I_1}{\sqrt{f_1} \sigma_1} & \ldots & \frac{\sum_i \gamma_i}{\sqrt{f_i} \sigma_i} & 0_{J \times 2} \\
\frac{\sum_i \gamma_i}{\sqrt{f_i} \sigma_i} & \ldots & \frac{f_J}{\sqrt{f_J} \sigma_J} & 0_{J \times 2} \\
\frac{f_1 I_1}{\sqrt{f_1} \sigma_1} & \ldots & \frac{\sum_i \gamma_i}{\sqrt{f_i} \sigma_i} & 0_{J \times 2} \\
\frac{\sum_i \gamma_i}{\sqrt{f_i} \sigma_i} & \ldots & \frac{f_J}{\sqrt{f_J} \sigma_J} & 0_{J \times 2}
\end{array} \right)
\right) \times

\left(\begin{array}{c c c c}
f_1 \sigma_1 & \ldots & f_J \sigma_J & 0_{J \times 2} \\
0_{J \times 2} & \ldots & 0_{J \times 2} & 0_{J \times 2}
\end{array} \right)^T
$$

که در آن f_i، f_1 و f_J به صورت زیر تعریف می‌شوند

$$
f_a' = (n \sigma_a^2 + \sigma_f^2) / (\sigma_a^2 \sigma_f^2),
$$

$$
f_i' = (\sigma_i^2 \sum x_i^2 + (n - 1) \sum x_i \gamma_i - \gamma \sum x_i x_m) / (f_i \sigma_i^2).
$$
به‌طور گروهی در مدل‌های چندضیفه \(\text{SMC} \) مدل‌های چندضیفه \(\text{MCMC} \) نیاز به مدل‌های مجزا می‌باشد.

\[f(\theta) = \frac{(nm - 1)\sigma_i^2 + mn(n - 1)\sigma_u^2 \sum x_{ij} - \gamma (mn\sigma_i^2 + \sigma_u^2 \sum x_{ij} - m)}{f_0 \sigma_i^2 \sigma_u^2 \sum x_{ij} + (n - 1) \sum x_{ij} \sigma_u^2 - \gamma \sigma_u^2 \sum x_{ij} - m_{ij}} \]

\[f(\theta) = \frac{\sum x_{ij} \sqrt{\sigma_i^2}}{(f_0 \sigma_i^2 \sigma_u^2 \sum x_{ij} + (n - 1) \sum x_{ij} \sigma_u^2 - \gamma \sigma_u^2 \sum x_{ij} - m_{ij})} \]

برای مدل عرض از میدا تصادفی بدون حضور متغیر تبیینی توضیح داده شد. نتیجه تغییر جزئی ورود متغیر تبیینی \(z_i \) در مدل و در نتیجه در تجربه چولوکسی است. با این حال همان‌گونه که روابط مربوط به ساختار تجربه چولوکسی برای مدل عرض از میدا تصادفی و حضور یک متغیر تبیینی ناشان می‌دهد با اضافه‌گیری متغیرهای مستقل دیگر تجربه چولوکسی وضعیتی به مرتبه پیچیده‌تر به خود خواهد گرفت. لذا اعمال آن در قرار بروز کردن پارامترها نیاز به پرداخت در کاهش زمان همگرایی تجربه گروهی \(\text{MCMC} \) نخواهد داشت.

روش پیشنهادی به کارگرفته شده در این بخش را روش \(\text{SMC} \) استادیاً و با یک مثال کاربردی و مطالعه شیب‌های سازی دقت با روش‌های حاصل و همچنین زمان همگرایی سیستم با استفاده از این روش با روش‌های دیگر مقایسه می‌شود. ما قبل از آن روش پیشنهادی دوم این مطالعه که در مورد نحوه بی‌کاری کردن تجربه چولوکسی مانند کارایی سیستم مدل اولیه برای دو مدل عرض از میدا و عرض از میدا در حضور متغیر مستقل است مورد مطالعه قرار می‌گیرد.

4.3 تجزیه چولوکسی مانند مدل‌های چندضیفه

پیشنهاد دیگر برای به‌طور گروهی در کواراپس سیستم استفاده از تجزیه چولوکسی برای مدل‌های متغیرهای سیستم مدل‌های ساختاری است. به عبارتی دیگر در این روش ابتدا تجزیه چولوکسی معکوس مانند سیستم کواراپس مدل‌های که به صورت رابطه \(4 \) توزیع شده باشد را محاسبه و سپس با دکل رابطه \(5 \) مدلی ساخته به‌دست آورده می‌شود. این روش را ناهگذاشته می‌نماییم.
عاطفه فرخی، موسی گلریزی‌اچ

برای مدل عرض از میدان تصادفی (1) ماتریس کوارباینس مدل ساختاری (2)

amatrisi قطعی مشکل از N تا نامیده ماتریس بالا مثبت حاصل
از تجزیه چولسکی، که یا \(\Sigma = \Sigma^{-1} \) نمایش داده می‌شود، ماتریس قطعی برترین شیما

\[\Theta (Y, X, \Sigma) \sim MVN \left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y, (X^T \Sigma^{-1} X)^{-1} \right) \]

روش Z = X\Sigma^{-1} نمونه‌برداری نسبت به روش SMCMC می‌باشد که به‌کمک

ماتریس جدید، میانگین و واریانس توزیع شرطی کامل در (9) به‌عنوان برای یک

\[\Theta (Z) \sim MVN \left((Z^T \Sigma^{-1} Z)^{-1} X^T \Sigma^{-1} Y, (Z^T \Sigma^{-1} X)^{-1} \right) \]

واریانس-1 آن به‌معنی Z و ذکر می‌شود که این توزیع

\[\Theta (Z) \sim MVN \left((Z^T \Sigma^{-1} Z)^{-1} X^T \Sigma^{-1} Y, (Z^T \Sigma^{-1} X)^{-1} \right) \]

برای نمونه‌گیری کوتاه محاسبه مستقیم

\[\Theta (Z) \sim MVN \left((Z^T \Sigma^{-1} Z)^{-1} X^T \Sigma^{-1} Y, (Z^T \Sigma^{-1} X)^{-1} \right) \]

به‌عنوان بر رابطه (5) به‌صورت

\[\Theta (Y, X, \Sigma) \sim MVN \left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y, (X^T \Sigma^{-1} X)^{-1} \right) \]

نحوه برای همگرایی خواهند افزود.

شکل ماتریسی تجزیه چولسکی ماتریس کوارباینس به روش SMCMC در مدل

عرض از میدان تصادفی و در حضور تنها یک متغیر تصادفی مانند مدل عرض از میدان

تصادفی و بدون حضور متغیر مستقل است. بنابراین، تفاوت این دو مدل در ماتریس

طرح آنها خواهند بود. در این حالت، اگر تجزیه چولسکی ماتریس کوارباینس مدل

ساختاری مربوط به \(\Sigma \) نشان داده شود رابطه (5) به‌صورت

\[\Theta (Y, X, \Sigma) \sim MVN \left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y, (X^T \Sigma^{-1} X)^{-1} \right) \]

نحوه برای همگرایی کوتاه. همانطور که ملاحظه می‌شود تعدادی از کمیته‌های موجود در

ماتریس کوارباینس در بردار میانگین نیز ظاهر شدند. لذا با دخیت اولیه تعدادی از

کمیته‌های ثابتی که در مراحل شبیه‌سازی

\[\Theta (Y, X, \Sigma) \sim MVN \left((X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y, (X^T \Sigma^{-1} X)^{-1} \right) \]

نیست بر سرعت الگوریتم SMCMC افزوده خواهند شد.
چاپگاه

пایگاه

شیوه‌سازی داده‌های که تا حدودی مشابه مثل کاربردی یک مثال واقعی مورد مطالعه قرار خواهد گرفت. سپس با
شیوه‌سازی داده‌هایی که تا حدودی مشابه مثل کاربردی یک مثال واقعی مورد مطالعه قرار خواهد گرفت. سپس با

در این بخش ابتدا یک مثال واقعی مورد مطالعه قرار خواهد گرفت. سپس با

برای محل بیان می‌توان در سطح تحمل آماری مربوطه صورت می‌گیرد. به‌وژه اجرای الگوریتم‌های پیشنهادی با روش‌های

موجود قابل مورد مقایسه قرار می‌گیرد.

1.4 مثال کاربردی

http://www.smgc.nl/quality-of-our-research/research-tools/multilevel

با استفاده از یک مدل چندسطحی با استفاده از روش‌های

MCMC

در ادامه ابتدا پارامترهای مدل چندسطحی با استفاده از روش‌های

MCMC و بهبودهای روش SMCMC برآورد خوشه‌های سپس زمان همگرایی

الگوریتم SMCMC و بهبودهای روش SMCMC برآورد خوشه‌های بررسی قرار خواهد گرفت. هنگام اجرای

روش‌های SMCMC و بهبودهای آن زنجیره 10000 بار تکرار کرده و

برای محاسبه میانگین‌های توزیع‌های شرطی کامل، به‌عنوان برآورد نهایی، گام

داشتن برای 1000 در نظر گرفته شده است. همچنین توزیع‌های پیشین پارامترهای
علائم فرخی، موسی گل علیزاده

مدل به صورت

\[\pi(\beta_1) \propto 1, \quad \pi(\beta_2) \propto 1, \quad \pi(1/\sigma^2_u) \sim \Gamma(a_u, b_u), \quad \pi(1/\sigma^2_v) \sim \Gamma(a_v, b_v) \]

اختیار شده است به‌طوری که مقادیر ابر پارامترهای همان مقادیر پیشین‌هایهاد شده

\[a_u = a_v = b_u = b_v = 0.001 \]

پارامترها در به برآورد گروه‌های بیزی و مکان‌های درست‌نمایی خواهد شد. برای برآورد

با حضور متغیر مستقل برآورد می‌شود. سپس مدل عرض از میدا تصادفی و

با حضور متغیر مستقل سیون مورد بررسی قرار می‌گیرد.

برآورد پارامترها هماهنگ با خطای برآورد عرض از میدا در یک مدل دوسته‌ای

عرض از میدا تصادفی در جدول 1 آمده است. برآورد پارامترهای مدل عرض از میدا تصادفی با روش‌های متغیر می‌باشد. تغییرات کمپارامترهای \(\beta \) حاکی از دقت روش‌های برآورد است. نتایج

نتایج بیان می‌دهند که با استفاده از روش‌های متغیر، تغییرات زیادی بین برآورد

پارامترها وجود ندارد. اما در ادامه نتایج داده خواهد شد که روش پیشنهادی از دو

مزیت عمدی برخوردار است.

جدول 1: برآورد و خطای استاندارد برآورد پارامترهای مدل عرض از میدا تصادفی

<table>
<thead>
<tr>
<th>(\hat{\sigma}_u^2)</th>
<th>(\hat{\sigma}_v^2)</th>
<th>(\beta_1(SE(\beta_1)))</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/541</td>
<td>0/522</td>
<td>0/900 (0/072)</td>
<td>MCMC</td>
</tr>
<tr>
<td>0/541</td>
<td>0/522</td>
<td>0/981 (0/081)</td>
<td>SMC-MCMC</td>
</tr>
<tr>
<td>0/541</td>
<td>0/522</td>
<td>0/981 (0/081)</td>
<td>SMC(MCMC)</td>
</tr>
<tr>
<td>0/541</td>
<td>0/522</td>
<td>0/981 (0/081)</td>
<td>SMC(MCMC)</td>
</tr>
</tbody>
</table>

نتجزیه چولسکی ماتریس کواریانس استاندارد برای مدل عرض از میدا تصادفی

و در حضور متغیر مستقل در حالی که تعداد واحد‌ها در گروه‌های متغیر

پیکسان نباید روغن منظمی را نهال نمی‌کند. اما برای انجام یک مقایسه مناسب
بهره اگوریتم SMCMC در مدل‌های جنگلی

تعداد مشاهدات هر گروه ۳۶ در نظر گرفته شده و برآورد پارامترهای مدل به روش SMCMC1 انجام شده است. قبلی ذکر است تغییر مستقل مدل صیغه بیماران SMCMC2 تحت درمان است. نتایج آن همراه با روش‌هایی در جدول ۲ ارائه شده است. نتایج نشان می‌دهد بین برآورد پارامترهای با روش‌های متفاوت تبادل تغییرات جزئی وجود دارد. اما برآورد پارامترهای در مدل‌های با یک مدل SMCMC2 در مدل عرض از میان تصادفی و بدون حضور بی‌توجهی مستقل تغییر مستقل تغییر است.

به علاوه مشاهده می شود مقدار عرض از میان (β) ۰.۰۵ نسبت به قبل کاهش چشمگیری داشته و در واریانس‌های مدل تبادل تغییرات ابزار شده است. همان‌گونه که در جدول ۲ برآورد و خطای استاندارد برآورد پارامترهای مدل عرض از میان تصادفی MCMC با حضور متغیر تبیینی سن با روش‌های مختلف مدلی می‌باشد.

<table>
<thead>
<tr>
<th>β (SE(β))</th>
<th>β (SE(β)) × 10^5</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.۴۹۱</td>
<td>0.۵۴۹ (0.۷۷)</td>
<td>MCMC</td>
</tr>
</tbody>
</table>

در مدل‌های پیشرفته ملاحظه شد روش SMCMC1 و بهبودهای آن برآوردهایی حداکثر مناسبه روش‌های موجود قبلی ارائه می‌نمایند. اما نتیجه تا تا نتایج در ESS و میزان زمان مصرفی سیستم (به‌غلیه) در ارائه برآورد پارامترهای مدل‌های چند‌سطحی متغیرات شامل مدل عرض از میان تصادفی و عرض از میان تصادفی در حضور متغیر تبیینی سن است. جدول ۲ مقدار ESS و میزان زمان مصرفی سیستم در دستیابی به برآورد پارامترهای مدل عرض از میان تصادفی و بدون حضور متغیر را نشان می‌دهد. همان‌گونه که ملاحظه شد میزان محاسبه برآورد پارامترهای مدل مورد نظر با روشن تجزیه چولسکی معنی‌رسی کواریانس به روش SMCMC2 خیلی کمتر است. هم‌چنین آن از همه پیشنهاد است. گرچه زمان کاربرد در روشن SMCMC2 و همین‌طور ESS
بیشتر از روش طبقه‌بندی PIRA، دیدگاه هوش مصنوعی بر این است که این شکستن با اعمال روش‌های پیشرفته در مدل‌های عرض از میادین می‌تواند جهت از آن شکستن استفاده کند.

جدول ۳- مقادیر ESS و زمان دستیابی PIRA در PIRA‌ها در مدل عرض از میادین

<table>
<thead>
<tr>
<th>زمان دستیابی ESS (به تاریخی)</th>
<th>ESS</th>
<th>زمان کاربر (به تاریخی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۱</td>
<td>۱۴۴/۵۷</td>
<td>۳۷۴۳۲۱ MCMC</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۱۰۸/۸۸</td>
<td>۹۵۷۴۶ SMCMC</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۱۹۴/۲۲</td>
<td>۹۶۸۸۲ SMCMC۱</td>
</tr>
<tr>
<td>۰/۰۶</td>
<td>۱۱۰/۱۵</td>
<td>۹۶۲۷۴۲ SMCMC۲</td>
</tr>
</tbody>
</table>

زا پوشش‌های مه‌گیرانه در PIRA‌ها در روش‌های پیشرفته و هوش مصنوعی استفاده می‌شود. MCMC، SMCMC، SMCMC۱ و SMCMC۲ مدل‌های مختلفی از یکدیگر هستند. روش‌های پیشرفته در PIRA‌ها در روش‌های پیشرفته ساختاری مشابهی دارند که با استفاده از PIRA در این روش‌ها و هوش مصنوعی استفاده می‌شود.
جدول 4: مقادیر و زمان (بر حسب ثانیه) دستیابی به پرآورده پارامترها در مدل MCMC

<table>
<thead>
<tr>
<th>زمان سیستم</th>
<th>ESS</th>
<th>روش</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/4</td>
<td>35876</td>
<td>MCMC</td>
</tr>
<tr>
<td>0/36</td>
<td>88735</td>
<td>SMCMC</td>
</tr>
<tr>
<td>0/16</td>
<td>88622</td>
<td>SMCMC1</td>
</tr>
<tr>
<td>0/11</td>
<td>88932</td>
<td>SMCMC2</td>
</tr>
</tbody>
</table>

2.4. مطالعه شبیه‌سازی

در این بخش بر اساس داده‌های شبیه‌سازی از مدل‌های تحت بررسی، روش‌های پیشنهادی مقایسه می‌شوند. بنابراین، برای ارزیابی امکان مربوط به هدف‌های کلی، خوان و سن پیمان‌های در پیش نهایی، سعی به داده‌های شبیه‌سازی تأثیری مشابه آنها باشد. با استفاده از 441 پرآورده پارامتر از توزیع‌های $N(0, 1)$ برای متغیر ویژه و از توزیع‌های $U(0: 1)$ برای متغیر تبعیضی به تحلیل آماری روش‌های پیشنهادی برداخته شد. برای اجرا و روش‌های پیشنهادی در محدوده میانگین‌های توزیع‌های شویغل کاملاً به عنوان پرآورده پارامترها 1000 مرحله دایرکت در نظر گرفته شده است. فرض‌های زیر با مدل همانند بخش‌های قبل در نظر گرفته شده است. پرآورده پارامترهای مدل دوسطحی عرض از میانگین تی واریانس، به روش‌های مختلف و تحت شبیه‌سازی از دو توزیع مشروطه فوق در جدول 5 آمده است.

همان‌طور که ملاحظه می‌شود، پرآورده پارامترها تحت توزیع نرمال پرآورده متفاوت با استفاده از پارامترهای هسته‌گذاری است. این نتایج به دو هدف مربوط به یکپارچه‌سازی و ایجاد مشاهدات هسته‌گذاری استفاده از توزیع یکپارچه است. در تبیین این نتایج، به تغییر نتایج توزیع‌ها کم است. نکته مهم شباهت نسبی پرآوردها تحت روش‌های مختلف آمده با فرض...
جدول ۵ برآورد و خطای استاندارد برآورد پارامترهای مدل عرض از میدان تصادفی MCMC با روش های مختلف:

<table>
<thead>
<tr>
<th>توزیع</th>
<th>روش</th>
<th>σ^2</th>
<th>β (SE (β))</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرمال</td>
<td>$SMC\text{MC}$</td>
<td>0/155</td>
<td>0/047</td>
</tr>
<tr>
<td>نرمال</td>
<td>$SMC\text{MC}$</td>
<td>0/159</td>
<td>0/047</td>
</tr>
<tr>
<td>نرمال</td>
<td>$SMC\text{MC}$</td>
<td>0/162</td>
<td>0/051</td>
</tr>
</tbody>
</table>

یک توزیع خاص برای متغیرهای مورد مطالعه است. این موضوع مقایسه روش های برآورد با استاندارد مقدار ESS و زمان مصرفی سیستم را امیری می سازد.

با فرض ثابت بودن شیب خط رگ سیون برای گوهای متغیر تنبیه‌ای، یا وارد مدل سیوته و با روش SMC\text{MC} و به‌همراه آن پارامترهای مدل برآورد شد. نتایج در جدول ۶ ارائه شده‌اند. همان‌طور که ملاحظه می‌شود بین برآورد پارامترها هنگام استفاده از توزیع‌های یکپاره‌ای و نرمال و برآوردگی‌های منتفی‌اند آن‌ها هنگام استفاده از داده‌های واقعی نتایج عملی و وجود داده، بر طرف برآورد واریانس خطای اصلی اول در هر دو حالت کاهش یافته‌اند ولی مقدار آن در سطح دوم میانگین ثابت است. به علاوه، مثل حالات مدل عرض از میدان تصادفی، مقایسه روش‌های مختلف از یک توزیع خاص، مثل نرمال، نشانگر شیب‌ها بین برآوردگی و خطای برآورد است.

در نتیجه می‌توان آن‌ها را بر اساس مقدار ESS و زمان مصرفی سیستم مورد مقایسه قرار داد.

علاوه بر بررسی دقت و نوی میلی برآورد‌ها با استفاده از شیب‌های سازی‌ای مدل، لازم است میزان به‌همود زمان اجرای الگوریتم‌های برآورد بر اساس روش‌های موجود مورد بررسی قرار گیرد. برای این منظور مقدار ESS زمان‌های کاربرد و سیستم در برآورد به کدامیک از وضعيت‌ها و مدل‌ها در جدول‌های ۷ و ۸ ارائه شده‌اند. نتایج حاکی از آن است که روش تجزیه چولسکی وارون و ماتریس کواریانس مدل اولیه کمترین زمان سیستم (به نامه) در دستیابی به برآورد پارامترها را به خوبی اختصاص داده.
بهورده الگوریتم SMCMC در مدل‌های جندسطحی

است. به‌علاوه مقدار حاصل از این روش در هر دو وضعیت شبیه‌سازی داده‌ها به‌شمارینی مقدار می‌خورد. در نتیجه روش نجات چپ به‌هم‌کنش ماتریس کواربانس مدل اولیه روش برتر در بین روش‌های مورد بررسی است.

برای مدل عرض از میان تصادفی همراه با حضور یک متغیر تبیینی نیز مقدار ESS و مقایسه زمان مسیری در تولید نمودن‌های کارا مورد محاسبه قرار گرفت. همراه با توجه به عملکرد یک مثالی برای محاسبه توزیع‌های ماتریس ماتریس SMCMC مدل اولیه و پس از اجرای الگوریتم مربوط به زمان مصرفی کامپیوتر برحورده الگوریتم حاصل از این روش در هر دو وضعیت SMCMC شبیه‌سازی داده‌ها به‌شمارینی مقدار می‌خورد. بنابراین اجرای الگوریتم SMCMC مهربان به تنظیم ماتریس‌های ماتریسی در مدل‌های ماتریسی این الگوریتم می‌تواند بهترین مورد انتخاب از نظر توانایی اجرای الگوریتم باشد.

بحث و نتیجه‌گیری

با گسترش توپنیک گیمبوتر برای برآورد بیشتر پارامترها در مدل‌های جندسطحی محققین نعمت‌های متغیری از الگوریتم SMCMC رامعین‌فی نمودند. پیکر از آن روش‌ها برای SMCMC می‌تواند به‌کمک تعیین ساختار جدید بخاطر حذف همبستگی بین پارامترهای تابیت و نتایج تصادفی مربوط به سطح بالای شده اما محدودیت‌های بعد ماتریس کواربانس مدل ساختمانی و هدف نمودن آن در هر گام زمان همبستگی SMCMC روش کامپیوتر می‌باشد. برای رفع این مشکل در روش اساسی تنظیم جدول‌های ماتریسی کواربانس پیشنهاد گردید. همچنین کارکرد روش‌های پیشنهادی بر
جدول ۶: برآورد خطای استاندارد برآورد پارامتر‌های مدل عرض از میدان تصادفی MCMC در حضور متغیر تیتوسی با روشن‌های مختلف

<table>
<thead>
<tr>
<th>$\hat{\sigma}_I^2$</th>
<th>$\hat{\sigma}_U^2$</th>
<th>$\beta_1(SE(\beta_1))$</th>
<th>$\beta_2(SE(\beta_2)) \times 10^8$</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/90</td>
<td>0/72</td>
<td>1/01/02/01 (6/155)</td>
<td>1/01/02/01 (0/624)</td>
<td>SMC1</td>
</tr>
<tr>
<td>0/99</td>
<td>0/72</td>
<td>1/01/02/01 (6/155)</td>
<td>1/01/02/01 (0/624)</td>
<td>SMC1</td>
</tr>
<tr>
<td>0/99</td>
<td>0/72</td>
<td>1/01/02/01 (6/155)</td>
<td>1/01/02/01 (0/624)</td>
<td>SMC1</td>
</tr>
<tr>
<td>0/99</td>
<td>0/72</td>
<td>1/01/02/01 (6/155)</td>
<td>1/01/02/01 (0/624)</td>
<td>SMC1</td>
</tr>
</tbody>
</table>

جدول ۷: مقدار ESS و زمان (بر حسب ثانیه) محاسبه برآورد پارامتر‌ها در مدل MCMC عرض از میدان تصادفی با روشن‌های مختلف

<table>
<thead>
<tr>
<th>زمان سیستم</th>
<th>زمان کاربر</th>
<th>ESS</th>
<th>روشن</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/54</td>
<td>0/91/97</td>
<td>673226</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/57</td>
<td>0/91/97</td>
<td>842377</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/53</td>
<td>0/91/97</td>
<td>876577</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/56</td>
<td>0/91/97</td>
<td>573200</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/55</td>
<td>0/91/97</td>
<td>428478</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/60</td>
<td>0/91/97</td>
<td>729326</td>
<td>SMC1</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۸: مقدار ESS و زمان (بر حسب ثانیه) محاسبه برآورد پارامتر‌ها در مدل MCMC عرض از میدان تصادفی در حضور متغیر تیتوسی با روشن‌های مختلف

<table>
<thead>
<tr>
<th>زمان سیستم</th>
<th>زمان کاربر</th>
<th>ESS</th>
<th>روشن</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/54</td>
<td>0/91/97</td>
<td>543452</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/54</td>
<td>0/91/97</td>
<td>745300</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/56</td>
<td>0/91/97</td>
<td>765500</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/55</td>
<td>0/91/97</td>
<td>492100</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/57</td>
<td>0/91/97</td>
<td>720500</td>
<td>SMC1</td>
<td></td>
</tr>
<tr>
<td>0/57</td>
<td>0/91/97</td>
<td>728293</td>
<td>SMC1</td>
<td></td>
</tr>
</tbody>
</table>
بهبود الگوریتم SMCMC در مدل‌های چندسطحی

اساس یک مثال کاربردی و یک مطالعه شبیه‌سازی مورد ارزیابی قرار گرفت و نجوی‌های ماتریس کووایلنس مدل ساختاری و سیس اجرای روش شبیه‌سازی به عنوان یک راهکار مقیم و موثر به منظور تولید نمونه‌های موجب استقلال پیش‌تر و همچنین کاهش زمان اجرای الگوریتم SMCMC با فرض نرمال بودن متغیرهای درگیر پیش‌تر از فرض توزیع یکنواخت است و پیش‌ترین می‌شود این مطلب با فرض توزیع‌های دیگر نیز صادق باشد.

تقدیر و تشکر

نوبت‌نامگذاری از داوران محترم که پیشنهادهای سازنده‌ای برای بهبود این مقاله ارائه کردند تقدیر و تشکر می‌نمایند.

مراجع

Browne, W. J. (2009), *MCMC Estimation in MLwiN (Version 2.10)*, Center for Multilevel Modelling, University of Bristol.

Improving of Structured Markov Chain Monte Carlo Algorithm in Multilevel Models

Farokhi, A. and Golalizadeh, M.
Deptartment of Statistics, Tarbiat Modares University, Tehran, Iran.

Abstract: The multilevel models are used in applied sciences including social sciences, sociology, medicine, economic for analysing correlated data. There are various approaches to estimate the model parameters when the responses are normally distributed. To implement the Bayesian approach, a generalized version of the Markov Chain Monte Carlo algorithm, which has a simple structure and removes the correlations among the simulated samples for the fixed parameters and the errors in higher levels, is used in this article. Because the dimension of the covariance matrix for the new error vector is increased, based upon the Cholesky decomposition of the covariance matrix, two methods are proposed to speed the convergence of this approach. Then, the performances of these methods are evaluated in a simulation study and real life data.

Keywords: Multilevel data, Random intercept models, MCMC algorithm, Cholesky decomposition.

Mathematics Subject Classification (2000): 62F15, 62J99