1. مترجم، ک. (1400)، معرفی یک مدل بقای فضایی با اثرات تصادفی چوله گاوسی و کاربرد آن در تحلیل دادههای بیماری کووید-19، مجله علوم آماری، 15، 567-590 2. Breiman, L. (2001), Random Forests, Machine Learning, 45, 5-32. [ DOI:10.1023/A:1010933404324] 3. Cox, R. D. (1975), Partial Likelihood, Biometrika, 62, 269-276. [ DOI:10.1093/biomet/62.2.269] 4. Davis, R. B. and Anderson, J. R. (1989), Exponential Survival Trees, Statistics in Medicine, 8, 947-961. [ DOI:10.1002/sim.4780080806] [ PMID] 5. Destras, O., Le Beux, S., De Magalhães, F. G., and Nicolescu, G. (2023), Survey on Activation Functions for Optical Neural Networks, ACM Computing Surveys, 56(2), 1-30. [ DOI:10.1145/3607533] 6. Faraggi, D. and Simon R. (1995), A Neural Network Model for Survival Data, Statistics in Medicine, 31, 73-82. [ DOI:10.1002/sim.4780140108] [ PMID] 7. Harrell, F. E., Cali, R. M., Pryor, D. B., Lee, K. L., and Rosati, R. A. (1982), Evaluating the Yield of Medical Tests, Jama, 247, 2543-2546. [ DOI:10.1001/jama.247.18.2543] [ PMID] 8. Harrell, F. E. (2001), Regression Modeling Strategies: with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, Springer, New York. [ DOI:10.1007/978-1-4757-3462-1] 9. Hastie, T. and Tibshirani, R. (1990), Generalized Additive Models, Statistical Sciences, 3, 297-318. 10. Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2, 1-758. [ DOI:10.1007/b94608_8] 11. Henderson, R. (1995), Problems and Prediction in Survival Data Analysis, Statistics in Medicine, 14, 161-184. [ DOI:10.1002/sim.4780140208] [ PMID] 12. Ishwaran, H., Kogalur, U. B., Blackstone, E.H. and Lauer, M. S. (2008), Random Survival Forests, The Annals of Applied Statistics, 2, 841-60. [ DOI:10.1214/08-AOAS169] 13. LeBlanc, M. and Crowley J. (1993), Survival Trees by Goodness of Split, Journal of the American Statistical Association, 88, 457-467. [ DOI:10.1080/01621459.1993.10476296] 14. Liu, L., Yang, F., Fan, Y., Kao, C., Wang, F., Yu, L., and Yu, Z. (2023), An Improved Training Algorithm Based on Ensemble Penalized Cox Regression for Predicting Absolute Cancer Risk, China CDC Weekly, 5(9), 206. [ DOI:10.46234/ccdcw2023.037] [ PMID] [ ] 15. Motarjem, K., (2022), Introduce a Survival Model with Spatial Skew Gaussian Random Effects and its Application in Covid-19 Data Analysis. Journal of Statistical Sciences, 15(2), 567-590. [ DOI:10.52547/jss.15.2.567] 16. Robins, J. M. and Rotnitzky, A. (1992), Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers, Springer, 297-331. [ DOI:10.1007/978-1-4757-1229-2_14] 17. Shimokawa, A., Kawasaki, Y. and Miyaoka, E. (2015), Comparison of Splitting Methods on Survival Tree, The International Journal of Biostatistics, 1, 175-188. [ DOI:10.1515/ijb-2014-0029] [ PMID] 18. Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011), Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, 39, 1-13. [ DOI:10.18637/jss.v039.i05] [ PMID] [ ] 19. Smith, J. (2020),The impact of Technology on Data Analysis, Journal of Data Science, 8(2), 123-135. 20. Smith, J., and Jones, A. (2020), Application of Statistical Learning Techniques in Survival Analysis, Journal of Biostatistics, 10(3), 123-135. 21. Tibshirani, R. (1997), The Lasso Method for Variable Selection in the Cox Model, Statistics in Medicine, 16, 385-395.
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 [ DOI:10.1002/(SICI)1097-0258(19970228)16:43.0.CO;2-3] 22. Utkin, L. V., Konstantinov, A. V., Chukanov, V. S., Kots, M. V., Ryabinin, M. A., and Meldo, A. A. (2019), A Weighted Random Survival Forest, Knowledge-Based Systems, 177, 136-144. [ DOI:10.1016/j.knosys.2019.04.015] 23. Wang, D. and Gao, Z., (2023), Distributed Finite-Time Optimization Algorithms with a Modified Newton-Raphson Method. Neurocomputing, 536, 73-79. [ DOI:10.1016/j.neucom.2023.03.027]
|