کارایی طرح‌های D-بهینه برای مدل پواسون با عرض از میدان تصادفی

مهداد نیایرست، سحر مهرمنصور
گروه آمار، دانشگاه رازی کرمانشاه

تاریخ دریافت: 1387/9/25
تاریخ پذیرش: 1389/9/19

چکیده: عملیات تحقیقات بیهینه‌سازی طرح برای مدل‌های با اثرات آمیخته روی مدل‌های خطی و مدل‌های با پاسخ دودویی تمعنک دارد. اخیراً مدل‌های پواسون با اثرات تصادفی نیز توسط بعضی از محققین در نظر گرفته شده است. در این مقاله حالتی خاص از مدل‌های آمیخته پواسون، تحت عنوان مدل پواسون با عرض از میدان تصادفی، بررسی می‌شود. تغییرات طرح آزمایش بر حسب واریانس اثر تصادفی را به دست آورده و نشان داده می‌شود که این تغییرات با استفاده از پارامتر واریانس است. به کمک مدل‌های D-کارایی تأثیر اثر تصادفی روی نقاط طرح در مقادیرآ مدل‌های مناسب بدان اثرات تصادفی بررسی و نشان داده می‌شود که این کارایی به مقدار واریانس مرتبط دارد.

وژوهای کلیدی: D-بهینه، بی‌مه‌سازی، D-کارایی، مدل پواسون، ماتریس شبیه اطلاع‌فیشر، اثر تصادفی.

آدرس الکترونیک مسئول مقاله: مهداد نیایرست، M.Nia@razi.ac.ir
کد موضوعاتی ریاضی (1642): 0062K05
نایحه بهینه‌سازی طرح آزمایش‌ها به سال ۱۹۱۸ بر می‌گردد که این بنا به بررسی
می‌شود که بهترین جایت‌های پیش‌بینی برای این مدل لبخندی، در نتیجه نام‌بایه ۶
بهترین مجموعه از نقاط، در مؤسسه‌های پیش‌بینی و دیگر این مؤسسات، بررسی‌های
بیشتری انجام شده است. این موضوع باعث می‌شود در سوابق مهیبانه، این طرح آزمایش
بهترین مدل بهینه شود. این همچنین باید با توجه به نیاز به افزایش اطلاع
فیشر برای تابع درست‌نمایی به‌طور تقریبی پایداری و یافته‌ها است. این ویژگی باعث
یک مشکل در سوابق می‌شود. از یک طرف برای پیدا کردن طرح آزمایش بهینه
با لحاظ کاهش پارامتر و از طرف دیگر برای داشتن مقدار پارامتر نیاز به
دسترسی به موضوع طرح آزمایش روی مدل‌های غیر خطی بسیار از دانش در این
روش طرح بهینه برای مدل بررسی مقدار آغازین پارامترهای به‌دست می‌آید. جز
در مدل‌های آمیخته‌ای خیلی تعمیم‌پذیری، فرم پایداری برای تابع درست‌نمایی به‌دست
نی‌آید، این مدل به همین‌عرض استفاده قرار می‌گیرد. که در آن فقط نیاز به
دسترسی به‌طوری اول و دوم است، (مک کولیک و بندلر، ۱۹۹۸). تی‌پرست (۲۰۰۹)
با روی شیوه درست‌نمایی طرح بهینه برای مدل ساده این مدل عرض از میاد
فصایی به‌دست آورده. در این مقاله این روش به طرح‌های بهینه برای مدل
پوپوسون مربوطه دوم با اثر عرض از میادین، تضمین یافته‌می‌شود. همچنین به
کیفیت ملایم D-کاراپی تأثیر نمی‌پذیرد درمی‌آید به‌طوری بر روی کاراپی طرح‌های
به‌ینه به‌سیاسی

در بخش ۲ به تعریف مدل برداخته و ساختار کوواریانس آن به‌دست آورده
می‌شود. در بخش ۳ ضمن تشخیص روی شیوه درست‌نمایی، با استفاده از آن ماتریس
اطلاع برای پارامترهای به‌دست آورده می‌شود. در بخش‌های ۴ و ۵ مقاله
D- بهینه

1 D-optimal criterion
مرجعی می‌شود سپس ابن ملاک برای دو مثلث خاص بدست آورده‌ه شد.

2 مدل

مدل رگرسیون پواسون با اثر عرض از مبداً تصادفی را به‌صورت

\[Y_{ijk} | b_i \sim P(\mu_{ij}^{(b)}) \]

مشخص \(E(Y_{ijk} | b_i) = \mu_{ij}^{(b)} = \exp(b_i + f_i(x_{ij})/\beta) \)

کننده‌ی نامی پیوندهای کانونی، که در آن \(Y_{ijk} \) بیانگر تعداد اکثریت‌ برای موضوع \(i \) در نقطه \(x_{ij} \) نشان‌دهنده تعداد تکرارهای موضوع \(i \) در نقطه \(x_{ij} \) در ناحیه‌ی طرح \(\alpha \) می‌باشد. \(\beta \) به‌عنوان شاخص توزیع نرمال با میانگین \(\sigma \) و واریانس \(\sigma^2 \) است.

به‌عنوان دیگر \(\hat{\beta}_0 + b_i \) اثر عرض از مبداً تصادفی است. همچنین فرض کنید برای \(Cov(b_i, b_{i'}) = 0 \)

به‌ازای هر \(i \neq i' \) توجه شود که با توجه به تعیین مدل

\[Var(Y_{ijk} | b_i) = E(Y_{ijk} | b_i) = \mu_{ij}^{(b)} \]

هم‌مرحله نیاپرست (2000) و با توجه به خاصیت باعث مشاهدات از یک موضوع

\[Var(Y_{ijk}) = Var(E(Y_{ijk} | b_i)) + E(Var(Y_{ijk} | b_i)) \]

\[= e^{f_i(x_{ij})/\beta + \sigma^2} (e^\sigma^2 - 1) + e^{f_i(x_{ij})/\beta + \sigma^2} \]

\[= \mu_{ij}^{(b)} (e^\sigma^2 - 1) + \mu_{ij}^{(b)} \]

و کوواریانس به‌صورت

\[Cov(Y_{ijk}, Y_{ij' k'}) = Cov(E(Y_{ijk} | b_i), E(Y_{ij' k'} | b_i)) + E(Cov(Y_{ijk}, Y_{ij' k'} | b_i)) \]

\(^* \) individual
\[
\mu_{ij} = E(Y_{ijk}) = E(E(Y_{ijk}|b_i)) = e^{T(x_{ij})} \beta + \sigma \epsilon
\]

فرض کنید مقدار موضع‌گذاری $Y_i = (Y_{i1}^T, \ldots, Y_{it_i}^T)^T$ که در آن $i = 1, \ldots, t_i$ یک بردار باشد هر Y_{ij} از $m_{ij} \times 1$ دارای میانگین x_{ij} است. با استفاده از جبر ماتریس‌ها داریم

\[
V_i = \text{Var}(Y_i) = A_i + a_i a_i^T
\]

که در آن

\[
A_i = \text{diag}(\mu_{i1}, \ldots, \mu_{it_i})
\]

و $a_i = \sqrt{\sigma^2 - \sigma^2(\mu_{i1}, \ldots, \mu_{it_i})^T}$ به طوری که $\mu_{i1}, \ldots, \mu_{it_i}$ همه میانگین‌های Y_i و $v \times v$ بردار یک سطر از Y_i می‌باشد.

دورجه برداری که $\mu_i = (\mu_{i1}, \ldots, \mu_{it_i})^T$ در طبقه تولیدی لازم به گذرگاه σ می‌باشد.

اگر بردار کل مشاهدات باشد با توجه به نام‌بندی‌گذاری میانگین‌های مختلف داریم $V = \text{Var}(Y) = \text{diag}(V_1, \ldots, V_{t_i})$.

حالت خاص در نظر گرفته می‌شود:

1- مدل رگرسیون بواسون ساده‌ای با عضو از میدان تصادفی SM

\[
\mu_{ij}^{(b)} = \exp(b_i + \beta_s + \beta_i x_{ij})
\]

2- مدل رگرسیون بواسون درجه دوم با عضو از میدان تصادفی QM

\[
\mu_{ij}^{(q)} = \exp(b_i + \beta_s + \beta_i x_{ij} + \beta_q x_{ij}^2)
\]

SM: Simple Model

QM: Quadratic Model
شیبه درستنمایی

برخلاف مدل‌های تعمیم‌پذیر خطي، روش ماکسیمم درستنمایی قابل استفاده برای تخمین پارامترهای مدل‌های آسيخته خطي تعمیم‌پذیره از جمله مدل‌های ارائه شده در این مقاله نیست. تابع لگاریتم درستنمایی

\[\ell(\beta; y) = \sum \log \left(\prod_{j=1}^{m_j} \prod_{k=1}^{n_k} e^{b_{jk}y} \right) \]

شبیه لگاریتمی گیری روي مقادیر مربوط به \(y \) به شرح ذیل است. به این ترتیب به نهایت برآورد پارامترهای با روش‌های غیرعمدی می‌باشد، بلکه به دست آمده از مدل ماتریس اطلاع فیشر، ماتریس کوار کوواریانس (\[\mathbf{V}(\mu(\beta)) = \mathbf{V}(\mu) \]) نیز مقدار بیشتری باشد. اگرچه نشان‌دهنده برای حل این مشکل صورت گرفته است ولی نتایج نتیجه قابل قبولی ارائه نشده است (برای مثال به شرح ذیل می‌توان به میلیوک و شوبله (2002) اشاره کرد). برای حل این مشکل روش‌های جایگزین استفاده می‌شود. در این مقاله روش شبیه‌سازی درستنمایی به عنوان روش تقیی برای درستنمایی به карبرده می‌شود.

با توجه به مک کولاک و نلر (1998)، برآوردگر شبیه‌سازی جواب معادله

\[U(\beta, Y) = D^T V^{-1}(\mu(\beta)) (Y - \mu(\beta)) \]

شبیه‌سازی است. به دست آمده \(U(\beta, Y) \) است. به این ترتیب، درصد مشتقات جزئی مربوط به \(Y \) به دست می‌آید. ماتریس زاکوبیان شبیه‌سازی جواب مشتقات جزئی مربوط به \(Y \) به دست می‌آید. ماتریس کوار کوواریانس \(\mathbf{V}(\mu(\beta)) = \mathbf{V}(\mu) \)

\[\text{Var}(U(\beta, Y)) = -E \left(\frac{\partial U(\beta, Y)}{\partial \beta} \right) = D^T V(\mu(\beta))^{-1} D \]

این ماتریس نقش ماتریس اطلاعات وابسته به همین دلیل ماتریس شبیه‌سازی زاکوبیان یکی می‌شود. فرض کنید که طرح آزمایشی تقیی \(^7\) برای موضوع

\[^5\text{Quasi-Score function}\]

\[^6\text{Quasi-Information}\]

\[^7\text{Approximate Design}\]
کارایی طراحی D-بهینه برابر مدل پویاون با عرض از مبدای تصادفی

قام بهصورت

\[\xi_i = \left\{ x_{i1}, \ldots, x_{it} \right\} \]

\[p_{ij} = \sum_{i=1}^{n} p_{ij} = P(x_{i1}, \ldots, x_{it}) \]

باشند که در \(ij \) نقطه نقاطه تکیه گه طرح و \(p_{ij} \) نسبتی از نمونه است که در نقطه \(x_{ij} \) مشاهده می‌شود. برای هر \(i \) است که \(e \) از هر \(\eta_i(\xi) = D_i^T (A_i + \bar{a}_iT)^{-1} D_i = F_i^T (A_i)^{-1} + (e^{\beta} - 1) (m_i - T)^{-1} F_i \) (2) را به‌صورت

\[\eta_i(\xi) = e^{\beta \gamma} (e^{\beta \gamma} (F_i^T A_i F_i)^{-1} + k)^{-1} = e^{\beta \gamma} (M^{-1}(\xi) + k)^{-1} \] (3)

نوشت، که در آن \(M(\xi) = e^{-\beta \gamma} F_i^T A_i F_i \)

\(k = e^{\beta \gamma} e^T F_i^T = \left(f(x_{i1}), \ldots, f(x_{it}) \right) \)

\(A_i = \text{diag}(m_{i1}, \mu_{i1}, \ldots, m_{it}, \mu_{it}) \) و \((1, \ldots, 0) \) است. روش نسبت داد آزمایش مشاهده نمونه و اندیس \(i \) را کلیه روابط بالا حذف کرد.

4 بی‌بهینه‌ی موضعی برای D

یکی از معیارهای بهینه‌سازی طرح، ملاک D-بهینگی است که بر اساس دترمینان ماتریس اطلاع تعیین می‌شود.

\[\text{در} \{\eta_3(\xi^*) \geq \text{det}(\eta_3(\xi)) \] برقرار باشد، یا به‌طور معادل

\[\xi^* = \text{arg max} \log(\text{det}(\eta_3(\xi))) \]
در بسیاری از کاربردها به خصوص در علوم پزشکی و زیستی ناحیه طرح معمولاً در بی‌پوش‌بازی نامنی از اعداد حقيقی است. در این مطالعه اگر ناحیه طرح اعداد حقيقی باشد نشان دهنده اینکه $h \geq 0$ دارای $\mu(x_i)$ به عنوان ناحیه طرح نامحدود و آگر به صورت h زیرزمینوی باشد نشان دهنده اینکه $h \leq 0$. در این مطالعه اگر ناحیه طرح باشد $\mu(x_i) = \mu(h)$ و بنابراین ناحیه طرح x_i به عنوان $\mu(x_i)$ می‌تواند مپتاظ ناحیه طرح نامحدود و ناحیه طرح محدود شناخته شود. فرض کنید میانگین $\mu(x_i)$ به عنوان میانگین $\bar{\mu}(x_i)$ به منظور بهبود بهبود در نتایج $\mu(x_i)$ نزولی باشد. به عبارات دیگر در رابطه β_i، اگر $h \geq 0$ ناحیه طرح باشد، ناحیه انتخاب شده $\bar{\mu}(x_i)$ می‌تواند به ناحیه طرح نامحدود و ناحیه طرح محدود $\mu(x_i)$ به ترتیب متعلق به $[0,1]$ و $[1,\infty]$ شود. در نتیجه به دو نتیجه نکته‌گاه در نظر گرفته شوند.

باینریست ۳۶۴۹ مدل SM طرح آزمایش‌های فرضیه ξ دارای دو مقدار مختلف x_i^p و x_i^p است. به عبارات دیگر ξ به صورت زیر است.

$$\xi = \left\{ \begin{array}{ll} x_i^p & \frac{x_i^p}{p} \quad \frac{x_i^p}{1-p} \end{array} \right. $$

با توجه به ξ در قضیه‌های زیر ترتیب ماتریس اطلاعات بندست آورده شده است.

قضیه ۱ (باینریست، ۳۶۴۹) مدل SM را در نظر بگیرید. در این مدل β_0 دارای β برابر β_0 داریم

$$\xi$$

$$\text{det}(\eta_\beta(\xi)) \propto \frac{m(1-p)\bar{\mu}(\ln \bar{\mu} - \ln \bar{\mu})^{\gamma}}{1 + \gamma(m, \beta_0(h), \sigma^2)(p\bar{\mu} + (1-p)\bar{\mu})}$$

$$\beta_0 = \beta_0 + \beta_0 , \quad \gamma(m, \beta_0(h), \sigma^2) = me^{\beta_0(h)} + \frac{\sigma^2}{2}$$

در آن $\gamma(m, \beta_0(h), \sigma^2) = me^{\beta_0(h)} + \frac{\sigma^2}{2}$

با استفاده از قضیه‌های γ نیاز به جدول ۱ این طرح از طرف دیگر از مقدار γ نشان داده نیست. نتیجه شود $\xi = h$ است. بنابراین به‌کنار یکی از نقاط طرح، نقطه $\gamma(m, \beta_0(h), \sigma^2)$ می‌دهد.
کنترل با کران پایین تاخیری طرح است. برای مدل رگرسیون پواسون ساده با نرخ
ثابت، باید $\theta = \sum_1^r \gamma_i e_i$ دارایی $= \gamma_i e_i$ نمود.
در این θ هر m و n مدل از هر h طراحی h حالت دارند که در جدول 1 ملاحظه می‌گردد و 50% دامنه یا مابین در نقطه h مشاهده شود و 50% مابین نیاز در نقطه h مشاهده گردد. این
نتایج با نتیجه ارائه شده در پانزده و همکاران (۶۹۲۰۲۳) منطبق است.

جدول 1: طرح‌های-میانگین آمار

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>$\lambda(m, \beta, \sigma^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1279</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>609</td>
<td>1155</td>
<td>1</td>
</tr>
<tr>
<td>424</td>
<td>665 5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>962</td>
<td>1</td>
</tr>
<tr>
<td>1874</td>
<td>276</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>817</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>799</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>781</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>776</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>782</td>
<td>1</td>
</tr>
</tbody>
</table>

به لحاظ نظری x_i می‌تواند به سمت ∞ میل کند. ولی در عمل این اتفاق
قابل مشاهده نیست و در آزمایش‌های واقعی مقادیر بسیار کوچک برای β قابل
تعارض نمی‌باشد. بنابراین در عمل معقول طرح‌های با ناهمگنی محدود در نظر گرفته

$\beta \in [\beta_0, 1]$ و $\sigma^2 \in [\sigma_0, \infty]$ می‌شود که در آن β_0 انتخاب و
بتای طرح استاندارد است. این در نتایج ایده‌اوان و انتخاب طرح

$y_i \pm \alpha \times 1.96 \cdot \frac{\sigma}{\sqrt{n}}$ با احتمال مساوی در نظر گرفته می‌شوند. از جنین طرحی در مدل خنی
با تعداد دو پارامتر داریم استفاده می‌شود. آگر D-کارایی بهصورت

$D = \prod_{i=1}^{\infty} \left(\frac{\prod_{j=1}^{\infty} \left(\frac{e_{ij}}{x_i} \right) }{\prod_{j=1}^{\infty} \left(\frac{1}{x_i} \right) } \right) ^{\infty}$

معرفی نویسی می‌توان به بررسی کارایی بک طرح نسبت به طرح

D-کارایی ارائه شده

پرداخت. این کارایی که می‌گردد که نیرومندی طرح

D-یک نمونه از بررسی کار

کرد. به‌دین معنی که اگر در حضور عامل تصادفی این عامل در نظر گرفته نشود نا
جهانی ممکن است اثر متغیر پیشگو کردنده بر روی مدل‌های ساده بسیاری مدل‌های جهانی ممکن است مناسب باشد. در این بخش طرح D-بهینه برای این مدل در نظر گرفته می‌شود. همانند بخش 3 فرض می‌شود تمام مسئله‌های تحت یک طرح آزمایش مشابه می‌شوند.

بنابراین می‌توان به‌هینه برای مدل

\[\mu_j = \mu(x_j) = e^{x_j \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3} \]

به‌عنوان نتیجه نهایی از رابطه مناسب دقت جهانی D-بهینه دارای دو نقطه مجزا \(x^* \) و \(x^* \) است به‌عنوان دو عدد طرح D-بهینه

\[\xi^* = \begin{cases} \frac{x_1^*}{\mu_j^*}, \frac{x_2^*}{\mu_j^*}, \frac{x_3^*}{\mu_j^*} & \text{برای } p_1^* < p_2^* < p_3^* \text{ است.} \\ \frac{x_1^*}{\mu_j^*}, \frac{x_2^*}{\mu_j^*}, \frac{x_3^*}{\mu_j^*} & \text{برای } p_1^* < p_3^* < p_2^* \text{ است.} \end{cases} \]

جدول 2: جهانی موضعی برای مدل D-بهینه برای مدل

<table>
<thead>
<tr>
<th>(\mu_j)</th>
<th>(\gamma(m, \beta, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{\sqrt{3.59}})</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{3.19}})</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{2.91}})</td>
<td>2</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{2.81}})</td>
<td>3</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{2.41}})</td>
<td>5</td>
</tr>
</tbody>
</table>

همراه با
پرهان: با توجه به قضیه هم‌ارزی شرط لازم و کافی برای (D) بهینه‌بردِن‌* برای برابری
عبارت است از
\[
\mu(x) f^T(x) M^{-1}(\xi^*) \eta^{-1}(\xi^*) M^{-1}(\xi^*) f(x) \leq \text{tr}[\eta^{-1}(\xi^*) M^{-1}(\xi^*)] \tag{2}
\]

برای توضیح بیشتر صفحات 94-97 فدرو و مکل (1992) دیاه شود.
اینجا \(\mu(x) = e^{\beta_0 x + \beta_1 x^2 + \beta_2 x^3 + \beta_3 x^4 + \beta_4 x^5 + \beta_5 x^6} \)
\(f(x) = (1 \, x \, x^2) \) یا \(f(x) = (x^2 x^3) \) ماتریس 3×3 متناسب همیشه مناسب و معلوم است.
می‌توان آن را بصورت
\[
M^{-1}(\xi^*) \eta^{-1}(\xi^*) M^{-1}(\xi^*) = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}
\]
در نظر گرفت. بنابراین رابطه (2) وامی نواد بهصورت
\[
\mu(x) \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} \leq \nu
\]
با
\[
\begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} \leq k(x)
\]
نشان داد که در آن \(k(x) = \frac{\nu}{\mu(x)} \).
همیشه نتایج 4 نوشته. بنابراین شرط لازم و کافی برای اینکه *\(\xi \) طرح بهینه باشد، این است که بهصورت
\[
h(x) \leq k(x), \quad h(x) = a_1 x + a_1 x^2 + a_2 x^3 + a_2 x^4 + a_3 x + a_4 > 0
\]
خلاقش شد. چون در آن \(i = 0, \ldots, n \) اعداد ثابتی هستند. با توجه به
\(\forall x, h(x) < 0 \) همیشه مناسب فرض شدن (4) است. درجه دوم به دانشگاه‌های
پک‌ها می‌پذیرفت. برای اینکه همه‌ای که \(\mu(x) \) در آن نزولی، با

در آن صعوباتی است بخواهد در بیش از سه نقطه، برای مثال چهار نقطه، $k(x)$ باشد. بنابراین همان گونه که در شکل 1 ملاحظه می‌شود، باشد. در نتیجه $h(x) = k(x)$ و وجود داشته باشد که در این فاصله $h(x) \geq k(x)$ و این با قضیه هم‌ارزی در تناقض است. بنابراین باشد در سه نقطه هموگونی را قطع کنند. نتیجه شرایط که در این مدل نیز ناحیه مESSAGES خواهند شد و کننده طرح از پایین کرکدار هستند و مانندم حالت قبل منشور از [h, y] و ناحیه طرح شمال به $[h, y]$ است. برای سادگی در ادامه فرض می‌کنیم β قضیه زیر با استفاده از (1) دترمینان ماتریس اطلاعات را برای β مشخص می‌کنند.

شکل 1: نمای کلی از رابطه (x, y)

قضیه ۲: مدل QM را دارا نظر بگیریم. برای طرح آزمایش سه نقطه ای Q دترمینان ماتریس اطلاعات به صورت

\[
\begin{vmatrix}
\frac{1}{1 + \lambda(m, \beta, \sigma^2)} \\
p_1p_2(1 - p_1 - p_2)\frac{\mu_1\mu_2}{\mu_1\mu_2}\left[\frac{x_1}{x_2} - x_3 + \frac{x_2}{x_3} - x_1\right] + x_1 - x_2
\end{vmatrix}
\]

(5)
کارایی طرح‌های D-بهینه برای مدل پواسون با عرض از میدان تصادفی

\[x_j = \frac{1}{\sqrt{\beta_r}} \left(\sqrt{r} - \sqrt{r + r \log \hat{p}_j} \right) \]

است. که در آن \(\hat{p}_j = \frac{\hat{p}_j}{\hat{p}_0} \) برای حالتی که \(\beta_r < 0 \)

\[\lambda(m, \beta, \sigma^2) = m \mu_s (\sigma^2 - 1) \]

برهان: با استفاده از رابطه (3) در امین

\[\eta_j(\xi) = e^{\sigma^2} (\eta^{-1}(\xi) + k)^{-1} = e^{\sigma^2} (\eta^{-1} + \sigma^2)^{-1} = \]

\[\left(\frac{\sum x_i \mu_j}{\sum x_i^2 \mu_j} \right)^2 - \frac{e^{\sigma^2} - 1}{1 + (e^{\sigma^2} - 1) \sum_{j=1}^{m} x_i \mu_j} \]

که دترمینانت \((\xi)\) پس از ساده‌کردن به صورت (5) خواهد شد.

می‌توان برای بهبود آوردن D-بهینه برای تخمين‌های پارامترها در مدل QM با استفاده از روش‌های عادی دترمینانت \((\eta)\) را مانتگیم کرد. طرح‌های D-بهینه را می‌توان به این معنی مقدار \(\lambda(m, \beta, \sigma^2)\) و دیگر آورده‌ایم که در جدول 3 و 4 آورده شده‌اند. برای بررسی کارایی مدل، در این حالت خیب طرح به‌نقطه‌ای استاندارد که شامل دو نقطه اندامی و انتهایی ناحیه طرح و نقطه‌ای میانی آن با وزن‌های ثابت است. در نظر گرفته شد. جدول 5 نشان می‌دهد که طرح استاندارد سه نقطه‌ای جهت نهایی که \(\eta\) خیب‌های کوچک نسبت به عمارت دیگر گیبسیار بزرگ‌تر باشد، نسبت به طرح D-جهینه کارایی کمتری دارد.

نتایج نشان می‌دهد که با افزایش \(\phi\) و بالاتری \((\lambda(m, \beta, \sigma^2)\) همچنین با افزایش ضریب تغییر مربوط دوم \(x\) به عنی \(\beta\)، تیز کارایی کاهش می‌یابد.
بحث و نتیجه‌گیری

اولین پارتهای اولین بحث (2009) از روش‌های درست‌نمایی به‌عنوان روش پایگاهی روش درست‌نمایی به‌دست آوردن طرح‌های D-جهشیه برای مدل ساده پواسون با ثور عرض از میزان تصویری استفاده کرد. در این مقاله روش مذکور برای مدل پواسون مرتبط دوم تعیین داده شد. نتایج نشان داد در این حالت طرح D-جهشیه شامل دو بخش است: نقطه‌ی است که از این نظر نتیجه مشابه مدل خطي با سه پارامتر و هم جثی تعیین باینها مدل ساده است. با استفاده از نتایج نظری، طرح‌های D-جهشیه برای مدل‌های پواسون ساده و درجه دوم با ثور عرض از میزان تصویری به‌دست آورده شد. نتایج نشان داد طرح D-جهشیه برای این مدل‌ها علی‌رغم پیکسان بودن در تعداد نقاط طرح کاملاً منتفیت با طرح D-جهشیه برای مدل‌های خطی و حتی مدل‌های پواسون بدون اثر تصویری است. بررسی D-کارایی نشان داد در صورتی که اثر تصویری در نظر گرفته نشود کارایی مدل کاهش می‌یابد به‌خصوص در حالت K=3 بزرگ‌تر باشد.

جدول ۲: طرح‌های D-جهشیه برای مدل QM (ناحیه طرح نمحدود)

<table>
<thead>
<tr>
<th>(\hat{\mu}_x)</th>
<th>(\hat{\mu}_y)</th>
<th>(\hat{\mu}_z)</th>
<th>(\hat{\mu}_w)</th>
<th>(\hat{\mu}_v)</th>
<th>(\lambda(m, \beta, \sigma))</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/249</td>
<td>/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>1</td>
</tr>
<tr>
<td>1/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>/248</td>
<td>1</td>
</tr>
<tr>
<td>1/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>/248</td>
<td>1</td>
</tr>
<tr>
<td>1/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>/248</td>
<td>1</td>
</tr>
<tr>
<td>1/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>/248</td>
<td>1</td>
</tr>
<tr>
<td>1/249</td>
<td>/282</td>
<td>/424</td>
<td>/424</td>
<td>/248</td>
<td>/248</td>
<td>1</td>
</tr>
</tbody>
</table>
جدول ۴: طرح های D-کارایی برای مدل QM (ناحیه طرح کران دار ۱/۰)

<table>
<thead>
<tr>
<th>μ_1</th>
<th>μ_2</th>
<th>p_1</th>
<th>p_2</th>
<th>$\lambda(m, \beta, \sigma^2)$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/4397$</td>
<td>$0/1$</td>
<td>$0/433$</td>
<td>$0/434$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$0/4188$</td>
<td>$0/1$</td>
<td>$0/434$</td>
<td>$0/421$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$0/4178$</td>
<td>$0/1$</td>
<td>$0/433$</td>
<td>$0/442$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$0/417$</td>
<td>$0/1$</td>
<td>$0/433$</td>
<td>$0/442$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$0/427$</td>
<td>$0/1$</td>
<td>$0/433$</td>
<td>$0/442$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$0/437$</td>
<td>$0/1$</td>
<td>$0/433$</td>
<td>$0/442$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول ۵: طرح های D-کارایی مدل استاندارد نسبت به طرح D-کارایی برای مدل QM

<table>
<thead>
<tr>
<th>r</th>
<th>$\lambda(m, \beta, \sigma^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/947$</td>
<td>$0/948$</td>
</tr>
</tbody>
</table>

مراجع

D-efficiency of D-optimal Designs for Poisson Model with Random Intercept

M. Niaparast and S. Mehrmansour
Deptartment of Statistics, Razi University, Kermanshah, Iran.

Abstract: The main part of optimal designs in the mixed effects models concentrates on linear models and binary models. Recently, Poisson models with random effects have been considered by some researchers. In this paper, an especial case of the mixed effects Poisson model, namely Poisson regression with random intercept is considered. Experimental design variations are obtained in terms of the random effect variance and indicated that the variations depend on the variance parameter. Using D-efficiency criterion, the impression of random effect on the experimental setting points is studied. These points are compared with the optimal experimental setting points in the corresponding model without random effect. We indicate that the D-efficiency depends on the variance of random effect.

Keywords: D-optimality, Quasi-Likelihood, D-efficiency, Poisson Regression Model, Quasi-information Matrix, Random Effect .

Mathematics Subject Classification (2010): 62K05