1. Alizadeh, M., Altun, E., Cordeiro, G.M. and Rasekhi M. (2017), The Odd Power Cauchy Family of Distributions: Properties, Regression Models and Applications, Journal of Statistical Computation and Simulation, 88(4), 785-807. [ DOI:10.1080/00949655.2017.1406938] 2. Al-Osh, M.A. and Aly, E.E.A.A. (1992), First Order Autoregressive Time Series with Negative Binomial and Geometric Marginals, Communications in Statistics-Theory and Methods, 21, 2483-2492. [ DOI:10.1080/03610929208830925] 3. Al-Osh, M.A. and Alzaid, A.A. (1987), First-order Integer-valued Autoregressive (INAR(1)) Process, Journal of Time Series Analysis, 8, 261-275. [ DOI:10.1111/j.1467-9892.1987.tb00438.x] 4. Altun, E., El-Morshedy, E. and Eliwa E.S. (2020), A Study on Discrete Bilal Distribution with Properties and Applications on Integer-valued Autoregressive Process, Revstat-Statistical Journal, 20, 501-528. 5. Alzaid, A.A. and Al-Osh, M.A. (1988), First-order Integer-valued Autoregressive (INAR(1)) Process: Distributional and Regression Properties, Statistica Neerlandica, 42, 53-61. [ DOI:10.1111/j.1467-9574.1988.tb01521.x] 6. Amini, M. and Roozbeh, M. (2015), Optimal Partial Ridge Estimation in Restricted Semiparametric Regression Models, Journal of Multivariate Analysis, 136, 26-40. [ DOI:10.1016/j.jmva.2015.01.005] 7. Borges, P., Bourguignon, M. and Molinares, F.F. (2017), A Generalized NGINAR(1) Process with Inflated Parameter Geometric Counting Series, Australian & New Zealand Journal of Statistics, 59, 137-150. [ DOI:10.1111/anzs.12184] 8. Eliwa, M.S., Altun, E., El-Dawoody, M. and El-Morshedy, M. (2020), A New Three-parameter Discrete Distribution with Associated INAR(1) Process and Applications, IEEE Access, 8, 91150-91162. [ DOI:10.1109/ACCESS.2020.2993593] 9. Eliwa, M.S. and El-Morshedy, M. (2022), A One-parameter Discrete Distribution for Over-dispersed Data: Statistical and Reliability Properties with Applications, Journal of Applied Statistics, 49, 2467-2487. [ DOI:10.1080/02664763.2021.1905787] [ PMID] [ ] 10. El-Morshedy, M., Eliwa, M.S. and Altun, E. (2020), Discrete Burr-Hatke Distribution with Properties, Estimation Methods and Regression Model, IEEE Access, 8, 74359-74370. [ DOI:10.1109/ACCESS.2020.2988431] 11. Marques, P.C.F., Graziadei, H. and Lopes, H.F. (2022), Bayesian Generalizations of the Integer-valued Autoregressive Model, Journal of Applied Statistics, 49(2), 336-356. [ DOI:10.1080/02664763.2020.1812544] [ PMID] [ ] 12. Gómez-Déniz, E. and Calderín-Ojeda, E. (2011), The Discrete Lindley Distribution: Properties and Applications, Journal of Statistical Computation and Simulation, 81(11), 1405-1416. [ DOI:10.1080/00949655.2010.487825] 13. Huang, J. and Zhu, F. (2021), A New First-order Integer-valued Autoregressive Model with Bell Innovations, Entropy, 323, 713. [ DOI:10.3390/e23060713] [ PMID] [ ] 14. Irshad, M.R., Chesneau, C., D'cruz, V. and Maya, R. (2021), Discrete Pseudo Lindley Distribution: Properties, Estimation and Application on INAR(1) Process, Mathematical and Computational Applications, 26(4), 76. [ DOI:10.3390/mca26040076] 15. Karlsen, H. and Tjøstheim, D. (1988), Consistent Estimates for the NEAR(2) and NLAR(2) Time Series Models, Journal of the Royal Statistical Society. Series B (Methodological), 50(2), 313-320. [ DOI:10.1111/j.2517-6161.1988.tb01730.x] 16. Krishna, H. and Pundir, P.S. (2009), Discrete Burr and Discrete Pareto Distributions, Statistical Methodology, 6, 177-188. [ DOI:10.1016/j.stamet.2008.07.001] 17. Liu, Z. and Zhu, F. (2021), A New Extension of Thinning-based Integer-valued Autoregressive Models for Count Data, Entropy, 23(1), 62. [ DOI:10.3390/e23010062] [ PMID] [ ] 18. Lívio, T., Mamode Khan, N., Bourguignon, M. and Bakouch, S.H. (2018), An INAR(1) Model with Poisson-Lindley Innovations, Economics Bulletin, 38(3), 1505-1513. 19. McKenzie, E. (1986), Autoregressive Moving-average Processes with Negative Binomial and Geometric Distributions, Advances in Applied Probability, 18, 679-705. [ DOI:10.2307/1427183] 20. Miletić Ilić, A.V. (2016), A Geometric Time Series Model with a New Dependent Bernoulli Counting Series, Communications in Statistics-Theory and Methods, 45, 6400-6415. [ DOI:10.1080/03610926.2014.895840] 21. Mohammadpour, M. and Shirozhan M. (2020), An INAR(1) Model Based on Negative Binomial Thinning Operator with Serially Dependent Noise, Journal of Statistical Sciences, 14(1), 215-232. [ DOI:10.29252/jss.14.1.217] 22. Nakagawa, T. and Osaki, S. (1975), Discrete Weibull distribution, IEEE Transaction on Reliability, 24, 300-301. [ DOI:10.1109/TR.1975.5214915] 23. Nastić, A.S., Ristić, M.M. and Miletić Ilić, A.V. (2017), A Geometric Time Series Model with an Alternative Dependent Bernoulli Counting Series, Communications in Statistics-Theory and Methods, 46(2), 770-785. [ DOI:10.1080/03610926.2015.1005100] 24. Ristić, M.M., Bakouch, H.S. and Nastić, A.S. (2009), A New Geometric First-order Integer-valued Autoregressive (NGINAR(1)) Process, Journal of Statistical Planning and Inference, 139, 2218-2226. [ DOI:10.1016/j.jspi.2008.10.007] 25. Ristić, M.M., Nastić, S.A. and Miletić Ilić, V.A. (2013), A Geometric Time Series Model with Dependent Bernoulli Counting Series, Journal of Time Series Analysis, 34(4), 423-516. [ DOI:10.1111/jtsa.12023] 26. Roozbeh, M. (2018), Optimal QR-based Estimation in Partially Linear Regression Models with Correlated Errors Using GCV Criterion, Computational Statistics and Data Analysis, 117, 45-61. [ DOI:10.1016/j.csda.2017.08.002] 27. Shamma, N., Mohammadpour, M. and Shirozhan, M. (2020), A Time Series Model based on Dependent Zero Inflated Counting Series, Computational statistics, 35, 1737-1757. [ DOI:10.1007/s00180-020-00982-4] 28. Weiß, C.H. (2008), Thinning Operations for Modeling Time Series of Count-a Survey, AStA Advances in Statistical Analysis, 92, 319-341. [ DOI:10.1007/s10182-008-0072-3] 29. Weiß, C.H. (2018), An Introduction to Discrete‐Valued Time Series, John Wiley & Sons Ltd. [ DOI:10.1002/9781119097013]
|