1. ﺯﺍﺭﻋﯽ، ﺵ. (۱۴۰۰)، ﺑﺮﺁﻭﺭﺩ ﮐﻮﭼﮏ ﻧﺎﺣﯿﻪﺍﯼ ﺑﯿﺰ ﺗﺠﺮﺑﯽ ﺍﺳﺘﻮﺍﺭ ﺑﺎ ﺗﻮﺯﯾﻊ ‑αﭘﺎﯾﺪﺍﺭ ﻣﺘﻘﺎﺭﻥ ﺑﺮﺍﯼ ﻣﻮﻟﻔﻪﻫﺎﯼ ﺧﻄﺎ، ﻣﺠﻠﻪ ﻋﻠﻮﻡ ﺁﻣﺎﺭﯼ، 15(2)، .۴۸۰−۴۶۳ 2. Audrino, F. and Buhlmann, P. (2016), Volatility Estimation with Functional Gradient Descent for very High-dimensional Financial Time Series, The Journal of Computational Finance, 6(3), 65-89. [ DOI:10.21314/JCF.2003.107] 3. Buhlmann, P. and Hothorn, T. (2007), Boosting Algorithms: Regularization, Pre- diction and Model Fitting, Statistical Science , 22(4), 477-505. [ DOI:10.1214/07-STS242] 4. Chen, L.P. (2024), Accelerated Failure Time Models with Error-prone Response and Nonlinear Covariates, Statistics and Computing, 34,183. [ DOI:10.1007/s11222-024-10491-9] 5. Chen, T. and Guestrin, C. (2016), XGBoost: A Scalable Tree Boosting System, KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August, 785-794. [ DOI:10.1145/2939672.2939785] 6. Chen, L. P. and Qiu, B. ﻭ(2023) Analysis of Length-biased and Partly Interval-censored Survival Data with Mismeasured Covariates, Biometrics, 79, 3929- 3940. [ DOI:10.1111/biom.13898] [ PMID] 7. Fay, R. E. and Herriot, R. A. (1979), Estimation of Income from Small Places: An Application of James-Stein Procedures to Census Data, Journal of the American Statistical Association, 74, 269-277. [ DOI:10.1080/01621459.1979.10482505] 8. Frees, E.W. (2004), Longitudinal and Panel Data Analysis and Applications in the Social Sciences, Cambridge University Press, New York. [ DOI:10.1017/CBO9780511790928] [ PMID] 9. Freund, Y. and Schapire, R. (1997), A Decision Theoretic Generalization of Online Learning and an Application to Boosting, Journal of Computer and System Sciences, 55(1), 119-139. [ DOI:10.1006/jcss.1997.1504] 10. Friedman, J. H. (2001), Greedy Function Approximation: a Gradient Boosting Machine, The Annals of Statistics, 29, 1189-1232. [ DOI:10.1214/aos/1013203451] 11. Ghosh, M., Nangia, N. and Kim, D.H. (1996), Estimation of Median Income of Four-person Families: a Bayesian Time Series Approach, Journal of the American Statistical Association, 91, 1423-1431. [ DOI:10.1080/01621459.1996.10476710] 12. Jiang, J., Nguyen, T. and Lahiri, P. (2018), A Unified Monte-Carlo Jackknife for Small Area Estimation after Model Selection, Annals of Mathematical Sciences and Applications, 3, 405-438. [ DOI:10.4310/AMSA.2018.v3.n2.a2] 13. Levy, P.S. and French, D.K. (1977), Synthetic Estimation of State Health Characteristics Based on the Health Interview Survey, Vital and Health Statistics, 2 (75), 78-1349. 14. Pfeffermann, D. and Bernard, C. (1991), Some New Estimators for Small Area Means with Application to the Assessment of Farmland Values, Journal of Business & Economics Statistics, 9, 73-84. [ DOI:10.1080/07350015.1991.10509828] 15. Rabe-Heskheth, S. and Skrondal, A. (2008), Multilevel and Longitudinal Modeling Using Stata, 2nd, StataCorp LP. 16. Rao, J.N.K. and Yu, M. (1992), Small Area Estimation by Combining Time Series and Cross-Sectional Data, In Proceedings of the Section on Survey Research Method, American Statistical Association, 1-9. 17. Rao, J. N. K. and Yu, M. (1994), Small Area Estimation by Combining Time Series and Cross-Sectional Data, Canadian Journal of Statistics, 22, 511-528. [ DOI:10.2307/3315407] 18. Robinzonov, N., Tutz, G. and Hothorn, T. (2012), Boosting Techniques for Nonlinear Time Series Models, AStA Advances in Statistical Analysis, 96(1), 99-122. [ DOI:10.1007/s10182-011-0163-4] 19. Schapire, R. (1990), The Strength of Weak Learnability, Mach. Learn, 5, 197-227. [ DOI:10.1007/BF00116037] 20. Singh, A.C., Mantel, H.J. and Thomas, B.W. (1994), Time Series EBLUPs for Small Areas using Survey Data, Survey Methodology, 20, 33-43. 21. Sigrist, F. (2021), Gradient and Newton boosting for classification and regression, Expert Systems with Applications, 167, 114080, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2020.114080 [ DOI:10.1016/j.eswa.2020.114080.] 22. Sugasawa, S., Kawakubo, Y. and Datta, G. S. (2019), Observed Best Selective Pre- diction in Small Area Estimation, Journal of Multivariate Analysis, 173, 383- 392. [ DOI:10.1016/j.jmva.2019.04.002] 23. Sugasawa, S. and Kubokawa, T. (2020), Small Area Estimation with Mixed models: A Review, Japanese Journal of Statistics and Data Science, 3, 693-720.
https://doi.org/10.1007/s42081-020-00076-x [ DOI:10.1007/s42081-020-00076-x.] 24. Vaida, F. and Blanchard, S. (2005), Conditional Akaike Information for Mixed-Effects Models, Biometrika, 92, 351-370. [ DOI:10.1093/biomet/92.2.351] 25. Wang, W. (2013), Identifiability of Linear Mixed Effects Models, Electronic Journal of Statistics, 7, 244-263. [ DOI:10.1214/13-EJS770] 26. You, Y. and Rao, J.N.K. (2000), Hierarchical Bayes Estimation of Small Area Means using Multi-level Models, Survey Methodology, 26, 173-181. 27. Zarei S. (2022), Robust Empirical Bayes Small Area Estimation with Symmetric α-Stable Distribution for Error Components, Journal of Statistical Sciences, 15 (2), 463-480. [ DOI:10.52547/jss.15.2.463]
|