|
1. نوراللهی، م.ج.، دیری، ع. و بالوئی جامخانه، ع. (۱۴۰۱)، مدل خودبازگشتی گسسته مقدار براساس نوفههایی با توزیع نمایی-وایبل گسسته، مجله علوم آماری، ۱۶، ۴۹۲-۴۶۹. 2. Alomaira, A.M. and Ahsan-ul-Haq, M. (2025). A New Mixed Poisson Komal Distribution with Application on Radiation, Agricultural and Medical Sciences Data. Journal of Radiation Research and Applied Sciences, Published Online: https://doi.org/10.1016/j.jrras.2025.101500. [ DOI:10.1016/j.jrras.2025.101500] 3. Al-Osh, M. and Alzaid, A. (1987). First-Order Integer-Valued Autoregressive (INAR (1)) Process. Journal of Time Series Analysis,8(3), 261-275. [ DOI:10.1111/j.1467-9892.1987.tb00438.x] 4. Altun, E. (2020). A New One-Parameter Discrete Distribution with Associated Regression and Integer-Valued Autoregressive Models. Mathematica Slovaca, 70(4), 979-994. [ DOI:10.1515/ms-2017-0407] 5. Altun, E., Bhati, D. and Khan, N.M. (2021). A New Approach to Model the Counts of Earthquakes: INARPQX(1) Process. SN Applied sciences, 274(3), 1-17. [ DOI:10.1007/s42452-020-04109-8] [ PMID] [ ] 6. Alzaid, A. and Al-Osh, M. (1988). First-Order Integer-Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties. Statistica Neerlandica, 42(1), 53-61. [ DOI:10.1111/j.1467-9574.1988.tb01521.x] 7. Bourguignon, M., Rodrigues, J. and Santos-Neto, M. (2019). Extended Poisson INAR (1) Processes with Equidispersion, Underdispersion and Overdispersion. Journal of Applied Statistics, 46(1), 101-118. [ DOI:10.1080/02664763.2018.1458216] 8. Maya, R., Chesneau, C., Krishna, A. and Irshad, M.R. (2022). Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications. Stats, 5, 755-772. [ DOI:10.3390/stats5030044] 9. Maya, R., Irshad, M.R., Chesneau, C., Nitin, S.L. and Shibu, D.S. (2022). On Discrete Poisson-Mirra Distribution: Regression, INAR(1) Process and Applications. Axioms, 11, 193-220. [ DOI:10.3390/axioms11050193] 10. McKenzie, E. (1985). Some Simple Models for Discrete Variate Time Series. JAWRA Journal of the American Water Resources Association, 21, 645-650. [ DOI:10.1111/j.1752-1688.1985.tb05379.x] 11. McKenzie, E. (1986). Autoregressive Moving-Average Processes with Negative Binomial and Geometric Marginal Distrbutions. Advances in Applied Probability, 18, 679-705. [ DOI:10.2307/1427183] 12. Mohammadpour, M., Bakouch, S.H. and Shirozhan, M. (2018). Poisson-Lindley INAR(1) Model with Applications. Brazilian Journal of Probability and Statistics, 32(2), 262-280. [ DOI:10.1214/16-BJPS341] 13. Noorollahi, M.J., Deiri, E. and Baloui Jamkhaneh, E. (2022). Integer-Valued Autoregressive Model Based on Innovations with Discrete Exponential-Weibull Distribution. Journal of Statistical Sciences, 16(2), 469-492. [ DOI:10.52547/jss.16.2.469] 14. Livio, T., Khan, N.M., Bourguignon, M. and Bakouch, H.S. (2018). An INAR(1) Model with Poisson-Lindley Innovations. Economics Bulletin, 38(3), 1505-1513. 15. Schweer, S. and WeiB, C.H. (2014). Compound Poisson INAR (1) Processes: Stochastic Properties and Testing for Overdispersion. Computational Statistics and Data Analysis, 77, 267-284. [ DOI:10.1016/j.csda.2014.03.005] 16. Shanker, R. (2023). Komal Distribution with Properties and Application in Survival Analysis. Biometrics and Biostatistics International Journal, 12(2), 40-44. [ DOI:10.15406/bbij.2023.12.00381] 17. Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman and Hall, London. [ DOI:10.1201/9780367803896] 18. WeiB, C.H. (2018). An Introduction to Discrete-Valued Time Series. Wiley, London.
|