1. اﮐﺒﺮی، م.، ﮐﺜﯿﺮی، ع. و اﺣﻤﺪی، ک. (1402)، ﮐﺎرﺑﺮد اﮐﺴﺘﺮوﭘﯽ در ﻣﺸﺨﺺ ﺳﺎزی ﺑﺮﺧﯽ از ﺗﻮزﯾﻊ ﻫﺎی پیوسته، ﻣﺠﻠﻪ ﻋﻠﻮم آﻣﺎری، 17، 1-19. 2. Akbari, M., Kasiri, A. and Ahmadi, K. (2023), Application of Extropy in Characterization of Some Continuous Distributions, Journal of Statistical Sciences, 17, 1-19. 3. Asadi, M. and Zohrevand, Y. (2007), On the dynamic cumulative residual entropy, Journal of Statistical Planning and Inference, 137, 1931-1941. [ DOI:10.1016/j.jspi.2006.06.035] 4. Balakrishnan, N., Buono, F. and Longobardi, M. (2022), On weighted extropies, Communications in Statistics-Theory and Methods, 51, 6250-6267. [ DOI:10.1080/03610926.2020.1860222] 5. Balakrishnan, N., Leiva, V., Sanhueza, A. and Cabrera, E. (2009), Mixture inverse Gaussian distributions and its transformations, moments and applications, Statistics, 43, 91-104. [ DOI:10.1080/02331880701829948] 6. Belis, M. and Guiasu, S. (1968), A quantitative-qualitative measure of information in cybernetic systems, IEEE Transactions on Information Theory, 14, 593-594. [ DOI:10.1109/TIT.1968.1054185] 7. Cover, T. M. and Thomas J. A. (2006), Elements of information theory, 2nd ed Hoboken NJ Wiley. 8. Di Crescenzo, A. and Longobardi, M. (2006), On weighted residual and past entropies, Scientiae Mathematicae Japonicae, 64, 255-266. 9. Guiasu, S. (1986), Grouping data by using the weighted entropy, Journal of Statistical Planning and Inference, 15, 63-69. [ DOI:10.1016/0378-3758(86)90085-6] 10. Jahanshahi, S.M. A., Zarei, H. and Khammar, A. H. (2020), On cumulative residual extropy, Probability in the Engineering and Informational Sciences, 34, 605-625. [ DOI:10.1017/S0269964819000196] 11. Hashempour, M., Kazemi, M. R. and Tahmasebi, S. (2022), On weighted cumulative residual extropy: characterization, estimation and testing, Statistics, 56, 681-698. [ DOI:10.1080/02331888.2022.2072505] 12. Hashempour, M. and Mohammadi, M. (2022), On dynamic cumulative past inaccuracy measure based on extropy, Communications in Statistics-Theory and Methods, 53, 1294-1311. [ DOI:10.1080/03610926.2022.2098335] 13. Hashempour, M. and Mohammadi, M. (2024), A new measure of inaccuracy for record statistics based on extropy, Probability in the Engineering and Informational Sciences, 38, 207-225. [ DOI:10.1017/S0269964823000086] 14. Kamari, O. and Buono, F. (2021), On extropy of past lifetime distribution, Ricerche di Matematica, 70, 505-515. [ DOI:10.1007/s11587-020-00488-7] 15. Kayal, S. and Moharana, R. (2017), On weighted cumulative residual entropy, Journal of Statistics and Management Systems, 20, 153-173. [ DOI:10.1080/09720510.2016.1224471] 16. Lad, F., Sanfilippo, G. and Agro, G. (2015), Extropy: complementary dual of entropy, Statistical Science, 30, 40-58. [ DOI:10.1214/14-STS430] 17. Lopes, R. H. (2011), Kolmogorov-Smirnov Test, International encyclopedia of statistical science, 1, 718-720. [ DOI:10.1007/978-3-642-04898-2_326] 18. Marshall, A. W. and Olkin, I. (1979), Inequalities: Theory of memorization and its applications, Academic Press, New York. 19. Mirali, M., and Baratpour, S. (2017), Dynamic version of weighted cumulative residual entropy, Communications in Statistics-Theory and Methods, 46, 11047-11059. [ DOI:10.1080/03610926.2016.1257711] 20. Mohammadi, M. and Hashempour, M. (2022), On interval weighted cumulative residual and past extropies, Statistics, 56, 1029-1047. [ DOI:10.1080/02331888.2022.2111429] 21. Mohammadi, M. and Hashempour, M. (2023), Extropy based inaccuracy measure in order statistics. Statistics, 57, 1490-1510. [ DOI:10.1080/02331888.2023.2273505] 22. Qiu, G. and Jia, K. (2018), The residual extropy of order statistics, Statistics and Probability Letters, 133, 15-22. [ DOI:10.1016/j.spl.2017.09.014] 23. Rao, M., Chen, Y., Vemuri, B.C. and Wang, F. (2004), Cumulative residual entropy: a new measure of information, IEEE Transactions on Information Theory, 50, 1220-1228. [ DOI:10.1109/TIT.2004.828057] 24. Shaked, M. and Shanthikumar, J. G. (2007), Stochastic Orders, Springer New York. [ DOI:10.1007/978-0-387-34675-5] 25. Shannon, C. E. (1948), A mathematical theory of communication, The Bell system technical journal, 27, 379-432. [ DOI:10.1002/j.1538-7305.1948.tb01338.x]
|