[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Search published articles ::
Showing 1 results for Penalized Log-Likelihood.

Farzad Eskandari, Hamid Haji Aghabozorgi,
Volume 16, Issue 1 (9-2022)
Abstract

Graphical mixture models provide a powerful tool to visually depict the conditional independence relationships between high-dimensional heterogeneous data. In the study of these models, the distribution of the mixture components is mostly considered multivariate normal with different covariance matrices. The resulting model is known as the Gaussian graphical mixture model. The nonparanormal graphical mixture model has been introduced by replacing the limiting normal assumption with a semiparametric Gaussian copula, which extends the nonparanormal graphical model and mixture models. This study proposes clustering based on the nonparanormal graphical mixture model with two forms of $ell_1$ penalty function (conventional and unconventional), and its performance is compared with the clustering method based on the Gaussian graphical mixture model. The results of the simulation study on normal and nonparanormal datasets in ideal and noisy settings, as well as the application to breast cancer data set, showed that the combination of the nonparanormal graphical mixture model and the penalty term depending on the mixing proportions, both in terms of cluster reconstruction and parameters estimation, is more accurate than the other model-based clustering methods.


Page 1 from 1     

مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.13 seconds with 33 queries by YEKTAWEB 4710