One way of dealing with the problem of collinearity in linear models, is to make use of the Liu estimator. In this paper, a new estimator by generalizing the modified Liu estimator of Li and Yang (2012) has been proposed. This estimator is constructed based on a prior information of vector parameters in linear regression and the generalized estimator of Akdeniz and Kachiranlar (1995). Using the mean square error matrix criterion, we have obtained the superiority conditions Of this newly defined estimator over the generalized Liu estimator. For comparison sake, a numerical example as well as a Monte Carlo simulation study are considered.