1. Akbari, M. G. and Hesamian, G. (2020), Time-Dependent Intuitionistic Fuzzy System Reliability Analysis, Soft Computing, 24, 14441-14448. [ DOI:10.1007/s00500-020-04796-w] 2. Gil, M. A., López-Díaz, M. and Ralescu, D. A. (2006), Overview on the Development of Fuzzy Random Variables, Fuzzy Sets Systems, 157, 2546-2557. [ DOI:10.1016/j.fss.2006.05.002] 3. Grzegorzewski, P. (1998), Statistical Inference about the Median From Vague Data, Control and Cybernetics, 27, 447-464. 4. Hesamian, G. R. and Chachi, J. (2015), Two-Sample Kolmogorov-Smirnov Fuzzy Test for Fuzzy Random Variables, Statistical Papers, 56, 61-82. [ DOI:10.1007/s00362-013-0566-2] 5. Hesamian, G., Akbari, M. G. and Zendehdel, J. (2019), Location and Scale Fuzzy Random Variables, International Journal of Systems Science, 229-241. [ DOI:10.1080/00207721.2019.1701131] 6. Huang, H. Z. (1995), Reliability Analysis Method in the Presence of Fuzziness Attached to Operating Time, Microelectronics Reliability, 35, 1483-1487. [ DOI:10.1016/0026-2714(94)00173-L] 7. Jiang, C. and Chen, C. (2003), A Numerical Algorithm of Fuzzy Reliability, Reliability Engineering and System Safety, 80, 299-307. [ DOI:10.1016/S0951-8320(03)00055-3] 8. Krätschmer, V. (2001), A Unified Approach to Fuzzy Random Variables, Fuzzy Sets and Systems, 123, 1-9. [ DOI:10.1016/S0165-0114(00)00038-5] 9. Kruse, R. and Meyer, K. D. (1987), Statistics with Vague Data, Netherlands, Springer. [ DOI:10.1007/978-94-009-3943-1_8] 10. Kwakernaak, H. (1978), Fuzzy Random Variables-I. Definition and Theorem, Information Sciences, 15, 1-29. [ DOI:10.1016/0020-0255(78)90019-1] 11. Kwakernaak, H. (1979), Fuzzy Random Variables-II. Algorithms and Examples for the Discrete Case, Information Sciences, 17, 253-278. [ DOI:10.1016/0020-0255(79)90020-3] 12. Lehmann, E. L. and Romano, J. P. (2005), Testing Statistical Hypotheses, Springer Press, Berlin. 13. Liu, B. (2013), Uncertainty Theory, Springer Prees, Berlin. 14. Marco, A., David. S., Mario, C. and Rolando, J. (2021), Fuzzy Reliability Centered Maintenance Considering Personnel Experience and Only Censored Data, Computers and Industrial Engineering, DOI: doi.org/10.1016/j.cie.2021.107440. 15. Puri, M. L. and Ralescu, D. A. (1986), Fuzzy Random Variables, Journal of Mathematical Analysis and Applications, 114, 409-422. [ DOI:10.1016/0022-247X(86)90093-4] 16. Saeidi, A. R., Akbari, M. G. and Doostparast, M. (2014), Hypotheses Testing with the Two Parameter Pareto Distribution on the Basis of Records in Fuzzy Environment, Kybernetika, 50, 744-757. [ DOI:10.14736/kyb-2014-5-0744] 17. Sedra, A. and Smith, K. (2004), Microelectronic Circuits, United Kingdom: Oxford University Press. 18. Shao, J. (2004), Mathematical Statistics, Springer Press, Berlin. 19. Shapiro, F. A. (2009), Fuzzy Random Variables, Insurance: Journal of Mathematical Economics, 44, 307-314. [ DOI:10.1016/j.insmatheco.2008.05.008] 20. Wied, D. and Weißbach, R. (2012), Consistency of the Kernel Density Estimator: a Survey, Statistical Papers, 53, 1-21. [ DOI:10.1007/s00362-010-0338-1] 21. Zadeh, L. A. (1965), Fuzzy Sets, Information Control, 8, 338-356. [ DOI:10.1016/S0019-9958(65)90241-X] 22. Zendehdel, J., Rezaei, M., Akbari, M. G., Zarei, R. and Alizadeh Noughabi, H. (2017), A Novel Approach for Modeling System Reliability Characteristics in an Imprecise Environment, Journal of Mathematical Modeling, DOI: doi.org/10.22124/jmm.2022.20487.1836. 23. Zendehdel, J., Zarei, R. and Akbari, M. G. (2022), Testing Exponentiality for Imprecise Data and Its Application, Soft Computing, 22, 3301-3312. [ DOI:10.1007/s00500-017-2566-y]
|