[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 17, Issue 1 (9-2023) ::
JSS 2023, 17(1): 0-0 Back to browse issues page
Estimation of Traffic Intensity Parameter and Stationarity Probability of M/M/c Queuing System Under a Stop Time in the System
Shahram Yaghoobzadeh *
Abstract:   (1925 Views)
In this article, it is assumed that the arrival rate of customers to the queuing system M/M/c has an exponential distribution with parameter $lambda$ and the service rate of customers has an exponential distribution with parameter $mu$ and is independent of the arrive rate. It is also assumed that the system is active until time T. Under this stopping time, maximum likelihood estimation and bayesian estimation under general entropy loss functions and weighted error square, as well as under-informed and uninformed prior distributions, the system traffic intensity parameter M/M/c and system stationarity probability are obtained. Then the obtained estimators are compared by Monte Carlo simulation and a numerical example to determine the most suitable estimator.
Keywords: Traffic intensity ‎parameter‎, ‎System reliability probability‎, ‌‎T‎he ‎M/M/c ‎queuing syste‎‌m, Stop time‎, ‎General entropy loss function‎, Weighted error square loss function.
Full-Text [PDF 246 kb]   (1636 Downloads)    
Type of Study: Research | Subject: Statistical Inference
Received: 2022/10/6 | Accepted: 2023/09/1 | Published: 2023/07/11
References
1. Clarke, A. B. (1957), Maximum Likelihood Estimates in a Simple Queue, Annals of Mathematical Statistics, 28, 1036-1040. [DOI:10.1214/aoms/1177706808]
2. Mukherjee. S. P. (2011), Estimation of Waiting Time Distribution in an ‎‎M/M/1‎$ Queue, OPSEARCH, 48 (4), 306-317.‎ [DOI:10.1007/s12597-011-0058-x]
3. Chowdhury, S., Mukherjee, S. P. (2013), Estimation of Trafic Intensity based on Queue Length in a Single ‎‎M/M/1‎ Queue, Communication in Statistics-Theory and Methods, 42, 2376-2390. ‎‎‎ [DOI:10.1080/03610926.2011.609320]
4. Chandrasekhar, P., Vaidyanathan, V. S., Durairajan, T. M., Yadavalli, V.S.S. (2020), Classical and Bayes Estimation in the ‎‎M/D/1$‎ Queueing System, Communications in Statistics - Theory and Methods, 22, 5411-5421. [DOI:10.1080/03610926.2020.1734833]
5. ‎‎Dey, D. K., Ghosh, M., Srinivasan, C. (1987), Simultaneous Estimation of Parameters under Entropy Loss, Journal of Statistical Planning and Inference, 15, 347-363.‎‎ [DOI:10.1016/0378-3758(86)90108-4]
6. Dey, D. K., Liu, P. L. (1992), On Comparison of Estimators in a Generalized Life Model, Microelectronics Reliability, 32, 207-221. [DOI:10.1016/0026-2714(92)90099-7]
7. Goldenshluger, A., Koops, D. T. (2019), Nonparametric Estimation of Service Time Characteristics in Infinite-Server Queues with Nonstationary Poisson input, Stochastic Systems, 9 (3), 183-207. [DOI:10.1287/stsy.2018.0026]
8. Muddapur, M.V. (1972), Bayesian Estimates of Parameters in some Queueing Models, Annals of the Institute of Statistical Mathematics, 24, 327-331. ‎‎‎‎ [DOI:10.1007/BF02479762]
9. Norstrom, J. G. (1996), The Use of Precautionary Loss Function in Risk Analysis, IEEE Transactions on Reliability, 45, 400-403. [DOI:10.1109/24.536992]
10. ‎Sing, S. K.‎,‎ Acharya, S. K. (2019), Equivalence between Bayes and the Maximum likelihood Estimator in ‎‎M/M/1‎‎ Queue, Communication in Statistics-Theory and Methods, 48 (19), 4780-4793. ‎ [DOI:10.1080/03610926.2018.1481971]
11. Schweer, S., Wichelhaus, C. (2020), Nonparametric Estimation of the Service Time Distribution in Discrete-Time Queueing Networks, Stochastic Processes and their Applications, 130 (8), 4643-4666. [DOI:10.1016/j.spa.2020.01.011]
12. Thiruvaiyaru, D., Basawa. I. V. (1992), Empirical Bayes Estimation for Queueing Systems and Networks, Queueing System, 11, 179-202. ‎ [DOI:10.1007/BF01163999]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yaghoobzadeh S. Estimation of Traffic Intensity Parameter and Stationarity Probability of M/M/c Queuing System Under a Stop Time in the System. JSS 2023; 17 (1)
URL: http://jss.irstat.ir/article-1-819-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 1 (9-2023) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4700