In this article, it is assumed that the arrival rate of customers to the queuing system M/M/c has an exponential distribution with parameter $lambda$ and the service rate of customers has an exponential distribution with parameter $mu$ and is independent of the arrive rate. It is also assumed that the system is active until time T. Under this stopping time, maximum likelihood estimation and bayesian estimation under general entropy loss functions and weighted error square, as well as under-informed and uninformed prior distributions, the system traffic intensity parameter M/M/c and system stationarity probability are obtained. Then the obtained estimators are compared by Monte Carlo simulation and a numerical example to determine the most suitable estimator.
Type of Study: Research |
Subject: Statistical Inference Received: 2022/10/6 | Accepted: 2023/09/1 | Published: 2023/07/11
References
1. Clarke, A. B. (1957), Maximum Likelihood Estimates in a Simple Queue, Annals of Mathematical Statistics, 28, 1036-1040. [DOI:10.1214/aoms/1177706808]
2. Mukherjee. S. P. (2011), Estimation of Waiting Time Distribution in an M/M/1$ Queue, OPSEARCH, 48 (4), 306-317. [DOI:10.1007/s12597-011-0058-x]
3. Chowdhury, S., Mukherjee, S. P. (2013), Estimation of Trafic Intensity based on Queue Length in a Single M/M/1 Queue, Communication in Statistics-Theory and Methods, 42, 2376-2390. [DOI:10.1080/03610926.2011.609320]
4. Chandrasekhar, P., Vaidyanathan, V. S., Durairajan, T. M., Yadavalli, V.S.S. (2020), Classical and Bayes Estimation in the M/D/1$ Queueing System, Communications in Statistics - Theory and Methods, 22, 5411-5421. [DOI:10.1080/03610926.2020.1734833]
5. Dey, D. K., Ghosh, M., Srinivasan, C. (1987), Simultaneous Estimation of Parameters under Entropy Loss, Journal of Statistical Planning and Inference, 15, 347-363. [DOI:10.1016/0378-3758(86)90108-4]
6. Dey, D. K., Liu, P. L. (1992), On Comparison of Estimators in a Generalized Life Model, Microelectronics Reliability, 32, 207-221. [DOI:10.1016/0026-2714(92)90099-7]
7. Goldenshluger, A., Koops, D. T. (2019), Nonparametric Estimation of Service Time Characteristics in Infinite-Server Queues with Nonstationary Poisson input, Stochastic Systems, 9 (3), 183-207. [DOI:10.1287/stsy.2018.0026]
8. Muddapur, M.V. (1972), Bayesian Estimates of Parameters in some Queueing Models, Annals of the Institute of Statistical Mathematics, 24, 327-331. [DOI:10.1007/BF02479762]
9. Norstrom, J. G. (1996), The Use of Precautionary Loss Function in Risk Analysis, IEEE Transactions on Reliability, 45, 400-403. [DOI:10.1109/24.536992]
10. Sing, S. K., Acharya, S. K. (2019), Equivalence between Bayes and the Maximum likelihood Estimator in M/M/1 Queue, Communication in Statistics-Theory and Methods, 48 (19), 4780-4793. [DOI:10.1080/03610926.2018.1481971]
11. Schweer, S., Wichelhaus, C. (2020), Nonparametric Estimation of the Service Time Distribution in Discrete-Time Queueing Networks, Stochastic Processes and their Applications, 130 (8), 4643-4666. [DOI:10.1016/j.spa.2020.01.011]
12. Thiruvaiyaru, D., Basawa. I. V. (1992), Empirical Bayes Estimation for Queueing Systems and Networks, Queueing System, 11, 179-202. [DOI:10.1007/BF01163999]
Yaghoobzadeh S. Estimation of Traffic Intensity Parameter and Stationarity Probability of M/M/c Queuing System Under a Stop Time in the System. JSS 2023; 17 (1) URL: http://jss.irstat.ir/article-1-819-en.html