1. Balakrishnan, N. and Cramer, E. (2014), The Art of Progressive Censoring, Applications to Reliability and Quality. New York: Birkhauser. [ DOI:10.1007/978-0-8176-4807-7] 2. Balakrishnan, N. Beutner, E. and Cramer, E. (2010), Exact two-Sample Nonparametric Confidence, Prediction, and Tolerance Intervals based on Ordinary and Progressively Type-II Right Censored Data. TEST, 19, 68-91 [ DOI:10.1007/s11749-008-0133-7] 3. Balakrishnan, N. Ng, H. K. T. and Navarro, J. (2011a), Linear Inference for Type-II Censored Lifetime Data of Reliability Systems with Known Signatures, IEEE Transactions on Reliability, 60, 426-440. [ DOI:10.1109/TR.2011.2134371] 4. Balakrishnan, N. Ng, H. K. T. and Navarro, J. (2011b), Exact Nonparametric Inference for Component Lifetime Distribution based on Lifetime Data from Systems with Known Signatures, Journal of Nonparametric Statistics, 23, 741-752. [ DOI:10.1080/10485252.2011.559547] 5. Bhattacharya, D. and Samaniego, F. J. (2010), Estimating Component Characteristics from System Failure Time Data, Naval Research Logistics, 57, 380-389. [ DOI:10.1002/nav.20407] 6. Cramer, E. Navarro, J. (2016), The Progressive Censoring Signature of Coherent Systems. Applied Stochastic Models in Business and Industry, 32, 697-710. [ DOI:10.1002/asmb.2188] 7. David, H. A. (1981), Order Statistics, 2nd edn. Wiley, New York. 8. Davis, C. E. and Steinberg, S. M. (2006), Quantile Estimation, in Encyclopedia of Statistical Sciences (2nd ed.), eds.S. Kotz, N. Balakrishnan, C.B. Read and B. Vidakovic, Hoboken, NJ:Wiley. 9. Fallah, A. Asgharzadeh, A. and Ng, H. K. T. (2021), Statistical Inference for Component Lifetime Distribution from Coherent System Lifetimes under a Proportional Reversed Hazard model, Communications in Statistics-Theory and Methods, 50(16), 3809-3833. [ DOI:10.1080/03610926.2020.1824275] 10. Fallah, A. Asgharzadeh, A. and Ng, H. K. T. (2021), Prediction based onType-II Censored Coherent System Lifetime Data under a Proportional Reversed Hazard Rate Model, Journal of the Iranian Statistical Society, 20(02), 153-181. [ DOI:10.52547/jirss.20.1.153] 11. Guilbaud, O. (2001), Exact Nonparametric Confidence Intervals for Quantiles with Progressive Type-II Censoring. Journal of Statistics, 28, 699-713. [ DOI:10.1111/1467-9469.00263] 12. Guilbaud, O. (2004), Exact Nonparametric Confidence, Prediction and Tolerance Intervals with Progressive Type-II Censoring. Journal of Statistics, 31}, 265-281. [ DOI:10.1111/j.1467-9469.2004.02-119.x] 13. Hermanns, M. Cramer, E. (2017), Likelihood Inference for the Component Lifetime Distribution based on Progressively Censored Parallel Systems Data. Journal of Statistical Computation and Simulation, 87, 607-630. [ DOI:10.1080/00949655.2016.1222392] 14. Kamps, U. and Cramer, E. (2001), On Distributions of Generalized Order Statistics. Statistics, 35, 269-280. [ DOI:10.1080/02331880108802736] 15. Kochar, S. Mukerjee, H. and Samaniego, F. J. (1999), The Signature of a Coherent System and its Application to Comparisons Among Systems, Naval Research Logistics, 46, 507-523.
https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D [ DOI:10.1002/(SICI)1520-6750(199908)46:53.0.CO;2-D] 16. Krishnamoorthy, K. Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications, and Computation. Wiley, Hoboken. 17. Kulkarni, M. G. and Rajarshi, M. B. (2020), Estimation of Parameters Component Lifetime Distribution in a Coheren System, Statistical Papers , 61, 403-421. [ DOI:10.1007/s00362-017-0945-1] 18. Navarro, J. (2021), Coherent System Lifetime, Introduction to System Reliability Theory, 23-70. [ DOI:10.1007/978-3-030-86953-3_2] [ ] 19. Navarro, J. and Rubio, R. (2010), Computations of Coherent Systems with five Components, Communications in Statistics -- Simulation and Computation, 39, 68-84. [ DOI:10.1080/03610910903312185] 20. Navarro, J. Ruiz, J. M. and Sandoval, C. J. (2007), Properties of Coherent Systems with Dependent Components, Communications in Statistics -- Theory and Methods, 36, 175-191. [ DOI:10.1080/03610920600966316] 21. Navarro, J. Samaniego, F. J. Balakrishnan, N. and Bhattacharya, D. (2008), On the Application and Extension of System Signatures in Engineering Reliability, Naval Research Logistics, 55, 313-327. [ DOI:10.1002/nav.20285] 22. Ng, H. K. T. Navarro, J. and Balakrishnan, N. (2012), Parametric Inference from System Lifetime Data under a Proportional Hazard Rate Model, Metrika, 75, 367-388. [ DOI:10.1007/s00184-010-0331-7] 23. Patel, J. K. (1986), Tolerance Limits-A Review, Communications in Statistics-Theory and Methods, 15, 2719-2762. [ DOI:10.1080/03610928608829278] 24. Rostami, A. Khanjari Sadegh, M. Khorashadizadeh, M. (2023), Reliability Estimation of the Stress-Strength Model in Coherent Systems Based on Exponential Distribution, Journal of Statistical Sciences,17(1), 61-80. [ DOI:10.61186/jss.17.1.10] 25. Samaniego, F. J. (1985), On Closure of the IFR Class under Formation of Coherent Systems, IEEE Transactions on Reliability Theory, 34, 69-72. [ DOI:10.1109/TR.1985.5221935] 26. Samaniego, F. J. (2007), System Signatures and their Applications in Engineering Reliability, International Series in Operations Research and Management Science 110, Springer, New York. 27. Shewhart, W.A. (1931), Economic Control of Quality of Manufactured Product.D.Van Nostrand Company, NewYork. 28. Tavangar, M. Asadi, M. (2020), Component Reliability Estimation based on System Failure-Time Data. Journal of Statistical Computation and Simulation, 17 (90), 3232-3249. [ DOI:10.1080/00949655.2020.1800704] 29. Yang, Y. Ng, H. K. T. and Balakrishnan, N. (2019), Expectation Maximization Algorithm for System based Lifetime Data with Unknown System Structure, AStA Advanced Statistical Analysis, 103, 69-98. [ DOI:10.1007/s10182-018-0323-x] 30. Zhang, J. Ng, H. K. T. and Balakrishnan, N. (2015a), Statistical Inference of Component Lifetimes with Location-Scale Distributions from Censored System Failure Data with Known Signature, IEEE Transactions on Reliability, 64, 613-626. [ DOI:10.1109/TR.2015.2417373] 31. Wilks, S. S. (1962), Mathematical statistics, Wiley, New York.
|