[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 1 (8-2024) ::
JSS 2024, 18(1): 0-0 Back to browse issues page
Nonparametric Inference for Component Lifetime Distribution of Coherent Systems Based on Progressively Censored
Adeleh Fallah *
Abstract:   (1099 Views)

‎In this paper‎, ‎non-parametric inference is considered for $k$-component coherent systems‎, ‎when the‎ ‎system lifetime data is progressively type-II censored‎. ‎In these coherent systems‎, ‎it is assumed that the‎ ‎system structure and system signature are known‎. ‎Based on the observed progressively type-II censored‎, ‎non-parametric confidence intervals are calculated for the quantiles of component lifetime distribution‎. ‎Also‎, ‎tolerance limits for component lifetime distribution are obtained‎. ‎Non-parametric confidence intervals for quantiles and tolerance limits are obtained based on two methods‎, ‎distribution function method and W mixed matrix method‎. ‎Two numerical‎ ‎example is used to illustrate the methodologies developed in this paper‎.

Keywords: Coherent system‎, ‎Progressively censored‎, ‎Quantiles‎, ‎Nonparametric confidence interval‎, ‎Tolerance limits
Full-Text [PDF 285 kb]   (476 Downloads)    
Type of Study: Research | Subject: Reliability
Received: 2023/05/13 | Accepted: 2024/08/31 | Published: 2024/06/4
References
1. Balakrishnan‎, ‎N‎. ‎and Cramer‎, ‎E‎. ‎(2014), The Art of ‎P‎rogressive Censoring‎, ‎Applications to Reliability and Quality‎. ‎New York‎: ‎Birkhauser‎. [DOI:10.1007/978-0-8176-4807-7]
2. ‎Balakrishnan‎, ‎N‎. ‎Beutner‎, ‎E‎. and ‎Cramer‎, ‎E‎. ‎(2010)‎, ‎Exact two-Sample Nonparametric Confidence‎, Prediction‎, ‎and Tolerance Intervals based on Ordinary and Progressively Type-II Right Censored‎ Data. TEST‎, ‎19, ‎68-91‎ [DOI:10.1007/s11749-008-0133-7]
3. ‎Balakrishnan‎, ‎N‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Navarro‎, ‎J‎. ‎(2011a)‎, ‎Linear Inference for Type-II Censored Lifetime Data of Reliability Systems with Known Signatures‎, ‎IEEE Transactions on Reliability‎, ‎60, 426-440‎. [DOI:10.1109/TR.2011.2134371]
4. ‎Balakrishnan‎, ‎N‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Navarro‎, ‎J‎. ‎(2011b)‎, ‎Exact Nonparametric Inference for Component Lifetime Distribution based on Lifetime Data from Systems with Known Signatures‎, ‎Journal of Nonparametric Statistics‎, ‎23, 741-752‎. [DOI:10.1080/10485252.2011.559547]
5. ‎Bhattacharya‎, ‎D‎. ‎and Samaniego‎, ‎F‎. ‎J‎. ‎(2010)‎, ‎Estimating Component Characteristics from System Failure Time Data‎, ‎Naval Research Logistics‎, ‎57, 380-389‎.‎ [DOI:10.1002/nav.20407]
6. ‎Cramer,‎ E. Navarro, J. (2016), The Progressive Censoring Signature of Coherent Systems. Applied Stochastic Models in Business and Industry, ‎32, 697-710. [DOI:10.1002/asmb.2188]
7. David, H. A. (1981)‎,‎ Order Statistics, 2nd edn. Wiley, New York.
8. ‎Davis‎, ‎C. E.‎ ‎and Steinberg‎, ‎S. M‎. ‎(2006)‎, Quantile Estimation‎, ‎in Encyclopedia of Statistical Sciences (2nd ed.), ‎eds‎.‎S‎. ‎Kotz‎, ‎N‎. ‎Balakrishnan‎, ‎C.B‎. ‎Read and B‎. ‎Vidakovic‎, ‎Hoboken‎, ‎NJ:Wiley‎.
9. ‎Fallah‎, ‎A‎. ‎Asgharzadeh‎, ‎A‎. and ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎(2021)‎, ‎Statistical Inference for Compo‎nent Lifetime Distribution from Coherent System Lifetimes under a Propor‎tional Reversed Hazard model‎, ‎Communications in Statistics-Theory and‎ ‎Methods‎, ‎50(16), 3809-3833‎. [DOI:10.1080/03610926.2020.1824275]
10. ‎Fallah‎, ‎A‎. ‎Asgharzadeh‎, ‎A‎. and ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎(2021)‎, Prediction based onType-II‎ ‎Censored Coherent System Lifetime Data under a Proportional Reversed‎ ‎Hazard Rate Model‎, ‎Journal of the Iranian Statistical Society, ‎20(02), 153-181‎. [DOI:10.52547/jirss.20.1.153]
11. ‎Guilbaud‎, ‎O‎. ‎(2001), ‎Exact Nonparametric Confidence Intervals for Quantiles with‎ Progressive Type-II Censoring‎. ‎Journal of Statistics‎, ‎28‎, ‎699-713‎. [DOI:10.1111/1467-9469.00263]
12. ‎Guilbaud‎, ‎O‎. ‎(2004)‎, ‎Exact Nonparametric Confidence‎, Prediction and Tolerance Intervals‎ ‎with Progressive Type-II Censoring‎. ‎Journal of Statistics‎, ‎31}, ‎265-281‎. [DOI:10.1111/j.1467-9469.2004.02-119.x]
13. ‎‎Hermanns,‎ M. Cramer, E. ‎(2017), Likelihood Inference for the Component Lifetime Distribution based on Progressively Censored Parallel Systems Data. Journal of Statistical Computation and Simulation, ‎87,‎ 607-630. [DOI:10.1080/00949655.2016.1222392]
14. Kamps‎, ‎U‎. and ‎Cramer‎, ‎E‎. ‎(2001), ‎On Distributions of Generalized Order Statistics‎. ‎Statistics, ‎35,‎ ‎269-280‎. [DOI:10.1080/02331880108802736]
15. Kochar, S. Mukerjee, H. and Samaniego, F. J. (1999)‎,‎ The Signature of a Coherent System and its Application to Comparisons Among Systems, ‎Naval Research Logistics, 46, 507-523. https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D [DOI:10.1002/(SICI)1520-6750(199908)46:53.0.CO;2-D]
16. ‎Krishnamoorthy‎, ‎K‎. ‎Mathew‎, ‎T‎. ‎(2009), ‎Statistical Tolerance Regions‎: ‎Theory‎, ‎Applications‎, ‎and‎ Computation. ‎Wiley‎, ‎Hoboken‎.
17. Kulkarni‎, M‎. G. ‎and Rajarshi‎, M‎. B. ‎(2020)‎, Estimation of Parameters Component Lifetime Distribution in a Coheren System‎, ‎Statistical Papers ‎, ‎61, 403-421‎. [DOI:10.1007/s00362-017-0945-1]
18. ‎Navarro‎, ‎J‎.‎ (2021)‎, ‎Coherent ‎System ‎Lifetime,‎ Introduction to System Reliability Theory, 23-70. [DOI:10.1007/978-3-030-86953-3_2] []
19. ‎Navarro‎, ‎J‎. ‎and Rubio‎, ‎R‎. ‎(2010)‎, ‎Computations of Coherent Systems with five Components‎, ‎Communications in Statistics‎ -- ‎Simulation and Computation, ‎39, 68-84‎. [DOI:10.1080/03610910903312185]
20. ‎Navarro‎, ‎J‎. ‎Ruiz‎, ‎J‎. ‎M‎. ‎and Sandoval‎, ‎C‎. ‎J‎. ‎(2007)‎, ‎Properties of Coherent Systems with Dependent Components‎, Communications in Statistics‎ -- ‎Theory and Methods‎, 36, 175-191‎. [DOI:10.1080/03610920600966316]
21. ‎Navarro‎, ‎J‎. ‎Samaniego‎, ‎F‎. ‎J‎. ‎Balakrishnan‎, ‎N‎. ‎and Bhattacharya‎, ‎D‎. ‎(2008)‎, ‎On the Application and Extension of System Signatures in Engineering Reliability, Naval Research Logistics‎, 55, ‎313-327‎. [DOI:10.1002/nav.20285]
22. ‎‎‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎Navarro‎, ‎J‎. ‎and Balakrishnan‎, ‎N‎. ‎(2012)‎, ‎Parametric Inference from System Lifetime Data under a Proportional Hazard Rate Model, Metrika‎, ‎75, 367-388‎. [DOI:10.1007/s00184-010-0331-7]
23. ‎Patel‎, ‎J. K‎. ‎(1986)‎, ‎Tolerance Limits-A Review‎, ‎Communications in Statistics-Theory and Methods‎, ‎15‎, ‎2719-2762‎. [DOI:10.1080/03610928608829278]
24. ‎Rostami, A. Khanjari Sadegh, M. Khorashadizadeh, M. (2023), Reliability Estimation of the Stress-Strength Model in Coherent Systems Based on Exponential Distribution, Journal of Statistical Sciences,17(1), 61-80. [DOI:10.61186/jss.17.1.10]
25. ‎Samaniego‎, ‎F‎. ‎J‎. ‎(1985)‎, ‎On Closure of the IFR Class under Formation of Coherent Systems‎, ‎IEEE Transactions on Reliability Theory‎, ‎34, 69-72‎. [DOI:10.1109/TR.1985.5221935]
26. ‎Samaniego‎, ‎F‎. ‎J‎. ‎(2007)‎, ‎System Signatures and their Applications in Engineering Reliability‎, ‎International Series in Operations Research and Management Science 110‎, ‎Springer‎, ‎New York‎.
27. ‎Shewhart‎, ‎W.A‎. ‎(1931)‎, ‎Economic Control of Quality of Manufactured Product.D.Van Nostrand Company‎, ‎NewYork‎.‎
28. ‎Tavangar‎, ‎M‎. ‎Asadi‎, ‎M‎. ‎(2020)‎, ‎Component Reliability Estimation based on System‎ Failure-Time Data‎. ‎Journal of Statistical Computation and Simulation, ‎17 (90), 3232-3249‎. [DOI:10.1080/00949655.2020.1800704]
29. ‎‎Yang‎, ‎Y‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Balakrishnan‎, ‎N‎. ‎(2019)‎, ‎Expectation Maximization Algorithm for System based Lifetime Data with Unknown System Structure‎, ‎AStA Advanced Statistical Analysis‎, ‎103, 69-98‎. [DOI:10.1007/s10182-018-0323-x]
30. ‎Zhang‎, ‎J‎. ‎Ng‎, ‎H‎. ‎K‎. ‎T‎. ‎and Balakrishnan‎, ‎N‎. ‎(2015a)‎, ‎Statistical Inference of Component Lifetimes with Location-Scale Distributions from Censored System Failure Data with Known Signature‎, ‎IEEE Transactions on Reliability‎, ‎64, 613-626‎. [DOI:10.1109/TR.2015.2417373]
31. ‎Wilks, S. S. (1962)‎,‎ ‎Mathematical statistics, Wiley, New York.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

fallah A. Nonparametric Inference for Component Lifetime Distribution of Coherent Systems Based on Progressively Censored. JSS 2024; 18 (1)
URL: http://jss.irstat.ir/article-1-847-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (8-2024) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.08 seconds with 45 queries by YEKTAWEB 4700