[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 1 (8-2024) ::
JSS 2024, 18(1): 0-0 Back to browse issues page
Estimating the Means of Two Sensitive Variables with a New Quantitative Randomized Response Method
Hamed Salemian , Eisa Mahmoudi * , Sayed Mohammad Reza Alavi
Abstract:   (2317 Views)
Often, in sample surveys, respondents refused to answer some questions of a sensitive nature. Randomized response methods are designed not to reveal respondent confidentiality. In this article, a new quantitative randomized response method is introduced, and by conducting a series of simulation studies, we show that the proposed method is preferable to the cumulative and multiplicative methods. By using unbiased predictors, we estimate the covariance between two sensitive variables. In an experimental study using the proposed method, the average number of cheating and the average daily cigarette consumption of the Shahid Chamran University of Ahvaz students are estimated along with their variance, and an estimate for the covariance between them is provided.
Keywords: Randomized Response Technique, Sensitive variable, Unbiased Provident, Covariance estimate, The average of the cheating number, The average of the number of smoking cigarette
Full-Text [PDF 246 kb]   (1063 Downloads)    
Type of Study: Applied | Subject: Sampling
Received: 2023/08/13 | Accepted: 2024/08/31 | Published: 2024/06/4
References
1. Alavi, S. M. R. (2007), Randomizing the Answers to Sensitive Multiple-Choice Questions and Estimating the Ratio of the Options of the Cheating Ratio of Students in Shahid Chamran University of Ahvaz, Andishye Amari Journal, 12, 13-19.
2. Alavi, S. M. R. and Tajodini, M. (2016), A New Randomized Response Technique and its Comparison with Simmons Method, Journal of Statistical Sciences,9, 227-239.
3. Alavi S. M. R., Joharzadeh M. and Chinipardaz R. (2019), A New Combined Randomized Response Model, Journal of Statistical Sciences, 13, 173-184. [DOI:10.29252/jss.13.1.173]
4. Alavi S. M. R., Nayyeri S. and Akhoond M. R. (2020), Randomized Item Count Model and Its Application with Randomized Simons, Journal of Statistical Sciences, 13, 497-513. [DOI:10.29252/jss.13.2.497]
5. Alavi, S. M. R. and Tajodini, M. (2016), Maximum Likelihood Estimation of Sensitive Proportion Using Repeated Randomized Response Techniques, Journal of Applied Statistics, 43, 563-571. [DOI:10.1080/02664763.2015.1070811]
6. Eichhorn, B. H. and Hayre, L. S. (1983), Scrambled Randomized Response Methods for Obtaining Sensitive Quantitative Data, Journal of Statistical Planning and Inference, 7, 307-316. [DOI:10.1016/0378-3758(83)90002-2]
7. Gjestvang, C. R. and Singh, S. (2007), Forced Quantitative Randomized Response Model: a New Device, Metrika, 66, 243-257. [DOI:10.1007/s00184-006-0108-1]
8. Greenberg, B. G., Abul-Ela, A. L. A., Simmons, W. R. and Horvitz, D. G. (1969), The Unrelated Question Randomized Response Model: Theoretical Framework, Journal of the American Statistical Association, 64, 520-539. [DOI:10.1080/01621459.1969.10500991]
9. Greenberg, B. G., Kuebler Jr, R. R., Abernathy, J. R. and Horvitz, D. G. (1971), Application of the Randomized Response Technique in Obtaining Quantitative Data, Journal of the American Statistical Association, 66, 243-250. [DOI:10.1080/01621459.1971.10482248]
10. Gupta, A., Jha, R. K. and Jain, S. (2017), Attack Modeling and Intrusion Detection System for 5G Wireless Communication Network. International Journal of Communication Systems, 30, 32-37. [DOI:10.1002/dac.3237]
11. Kim, J. M. and Warde, W. D. (2004), A Stratified Warner's Randomized Response Model, Journal of Statistical Planning and Inference, 120, 155-165. [DOI:10.1016/S0378-3758(02)00500-1]
12. Mehta, S., Dass, B. K., Shabbir, J. and Gupta, S. (2012), A Three-Stage Optional Randomized Response Model, Journal of Statistical Theory and Practice, 6, 417-427. [DOI:10.1080/15598608.2012.695558]
13. Warner, S. L. (1965), Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias, Journal of the American Statistical Association, 60, 63-69. [DOI:10.1080/01621459.1965.10480775] [PMID]
14. Warner, S. L. (1971), The Linear Randomized Response Model, Journal of the American Statistical Association, 66, 884-888. [DOI:10.1080/01621459.1971.10482364]
15. Yan, Z., J. Wang, and J. Lai. (2008), An Efficiency and Protection Degree-Based Comparison Among the Quantitative Randomized Response Strategies, Communications in Statistics- Theory and Methods, 38, 400-408. [DOI:10.1080/03610920802220785]
16. Yazari, Z. and Alavi S. M. R. (2015), Quantitative Three-Stage Optional Randomized Response Model, Journal of Statistical Sciences, 8, 245-260.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salemian H, Mahmoudi E, Alavi S M R. Estimating the Means of Two Sensitive Variables with a New Quantitative Randomized Response Method. JSS 2024; 18 (1)
URL: http://jss.irstat.ir/article-1-864-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (8-2024) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.09 seconds with 45 queries by YEKTAWEB 4700