[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 1 (8-2024) ::
JSS 2024, 18(1): 0-0 Back to browse issues page
Geostatistical Survival Data Analysis with Bayesian Approach
Milad Pakdel , Kiomars Motarjem *
Abstract:   (1618 Views)

In some instances, the occurrence of an event can be influenced by its spatial location, giving rise to spatial survival data. The accurate and precise estimation of parameters in a spatial survival model poses a challenge due to the complexity of the likelihood function, highlighting the significance of employing a Bayesian approach in survival analysis. In a Bayesian spatial survival model, the spatial correlation between event times is elucidated using a geostatistical model. This article presents a simulation study to estimate the parameters of classical and spatial survival models, evaluating the performance of each model in fitting simulated survival data. Ultimately, it is demonstrated that the spatial survival model exhibits superior efficacy in analyzing blood cancer data compared to conventional models.

Keywords: Survival Analysis, Spatial Correlation, Spatial Survival Model, Bayesian Approach.
Full-Text [PDF 266 kb]   (732 Downloads)    
Type of Study: Applied | Subject: Spatial Statistics
Received: 2023/12/27 | Accepted: 2024/08/31 | Published: 2024/06/4
References
1. Banerjee, S., Wall, M. M. and Carlin, B. P. (2003), Frailty Modeling for Spatially Correlated Survival Data with Application to Infant Mortality in Minnesota, Biostatistics, 4(1), 123-142. [DOI:10.1093/biostatistics/4.1.123] [PMID]
2. Cox, D. R. (1972), Regression Models and life-tables (with Discussion), Journal of the Royal Statistical Society, Series B 34, 187-220. [DOI:10.1111/j.2517-6161.1972.tb00899.x]
3. Diggle, P. J., and J. A. Tawn, and R. A. Moyeed (1998), Model-based Geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 299-350. [DOI:10.1111/1467-9876.00113]
4. Gelfand, Alan E., and Sudipto Banerjee. (2017), Bayesian Modeling and Analysis of Geostatistical Data, Annual Review of Statistics and Its Application, 4, 245-266. [DOI:10.1146/annurev-statistics-060116-054155] [PMID] []
5. Liu, Yulu. (2023), A Review of Survival Analysis Theory and Its Application. Proceedings of the 2nd International Conference on Culture, Design and Social Development (CDSD 2022). [DOI:10.2991/978-2-38476-018-3_54]
6. Liopis-Cardona, Fran, Carmen Armero, and Gabriel Sanfélix-Gimeno. (2023), A Bayesian Multivariate Spatial Approach for Illness-death Survival Models. Statistical Methods in Medical Research, 32, 1633-1648. [DOI:10.1177/09622802231172034] [PMID] []
7. Miller, J. R. G. (2011), Survival Analysis, New York: Springer.
8. Mohammadzadeh, M (2019), Spatial Statistics and its Applications, Third edition, Tarbiat Modares University, Tehran, Iran.
9. Motarjem, K., (2022), Introduce a Survival Model with Spatial Skew Gaussian Random Effects and its Application in Covid-19 Data Analysis. Journal of Statistical Sciences, 15(2), 567-590. [DOI:10.52547/jss.15.2.567]
10. Motarjem, K., and Mohammadzadeh, M., and Abyar, A. (2020), Geostatistical Survival Model with Gaussian Random Effect, Statistical Papers, 61, 85-107. [DOI:10.1007/s00362-017-0922-8]
11. Rue, H. and Held, L. (2005), Gaussian Markov Random Fields, Chapman and Hall. [DOI:10.1201/9780203492024]
12. Tang, Y., Song, X., and Yi, G. Y. (2022), Bayesian Analysis under Accelerated Failure Time Models with Error-prone Time-to-event Outcomes. Lifetime Data Analysis, 1-30. [DOI:10.1007/s10985-021-09543-3] [PMID]
13. Thamrin, S. A., and Amran, J.aya, A. K., and Rahmi, S., and Ansariadi. (2017), Bayesian Inference for Spatial Parametric Proportional Hazards Model Using Spatsurv R, In AIP Conference Proceeding, 1827(1), 200-215. [DOI:10.1063/1.4979431]
14. Thamrin, S. A., Jaya, A. K., and Mengersen, K. (2021), Bayesian Spatial Survival Modelling for Dengue Dever in Makassar, Indonesia. Gaceta sanitaria, 35, 59-63. [DOI:10.1016/j.gaceta.2020.12.017] [PMID]
15. Zhang, Z., Stringer, A., Brown, P. and Stafford, J. (2023), Bayesian Inference for Cox Proportional Hazard Models with Partial Likelihoods, Nonlinear Covariate Effects and Correlated Observations. Statistical Methods in Medical Research, 32(1), 165-180. [DOI:10.1177/09622802221134172] [PMID] []
16. Zhou, H. and Hanson, T. (2015), Bayesian Spatial Survival Models, Nonparametric Bayesian Inference in Biostatistics, 215-246. [DOI:10.1007/978-3-319-19518-6_11]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pakdel M, Motarjem K. Geostatistical Survival Data Analysis with Bayesian Approach. JSS 2024; 18 (1)
URL: http://jss.irstat.ir/article-1-877-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (8-2024) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.18 seconds with 45 queries by YEKTAWEB 4704