[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 2 (2-2025) ::
JSS 2025, 18(2): 0-0 Back to browse issues page
Fuzzy Multiple Logistic Regression Under Fuzzy Random Errors
Maryam Maleki , Hamid Reza Nili-Sani * , M.G. AkBARI
Abstract:   (878 Views)
In this paper, we consider the issue of data classification in which the response (dependent) variable is two (or multi) valued and the predictor (independent) variables are ordinary variables. The errors could be nonprecise and random. In this case, the response variable is also a fuzzy random variable. Based on this and logistic regression, we formulate a model and find the estimation of the coefficients using the least squares method. We will describe the results with an example of one independent random variable. Finally, we provide recurrence relations for the estimation of parameters. This relation can be used in machine learning and big data classification.
Keywords: Multiple Logistic Regression, Fuzzy Random Variable
Full-Text [PDF 293 kb]   (370 Downloads)    
Type of Study: Applied | Subject: Fuzzy Statistics
Received: 2024/01/27 | Accepted: 2024/05/30 | Published: 2024/12/2
References
1. طاهری، س. م. و ﻣﺎﺷﯿﻦ ﭼﯽ، م. (1378)، ﻣﻘﺪﻣﻪ ای ﺑﺮ اﺣﺘﻤﺎل و آﻣﺎر ﻓﺎزی، داﻧﺸﮕﺎه ﺷﻬﯿﺪ ﺑﺎﻫﻨﺮ ﮐﺮﻣﺎن
2. ﻣﻘﯿﻢ ﺑﯿﮕﯽ، م. (1401)، رﮔﺮﺳﯿﻮن ﻟﻮژﺳﺘﯿﮏ ﭼﻨﺪ ﺟﻤﻠﻪ ای ﻧﯿﻤﻪ ﭘﺎراﻣﺘﺮی ﺑﺮای رده ﺑﻨﺪی داده ﻫﺎی ﺷﮑﻞ، ﻣﺠﻠﻪ ﻋﻠﻮم آﻣﺎری، 16(2)، 449-468.
3. Agresti, A. (2015), Foundations of Linear and Generalized Linear Models, Hoboken: Wiley.
4. Fauci, A., Braunwald, S. E., Kasper, D. L., Hauser, S. L., Longo, D. L., Jameson, J. L., and Loscalzo, J. (2008), Harrison's Principals of Internal Medicine, New York: Wiley. 2275- 2279.
5. Goetschel, R., and Voxman, W. (1986), Elementary Fuzzy Calculus, Fuzzy Sets and Systems, 18, 31-43. [DOI:10.1016/0165-0114(86)90026-6]
6. Gut, A. (2005), Probability, A Graduated Course, Springer Science+Business Media, Inc.
7. Hesamian, G. and Akbari, M. G. (2017), Semi-Parametric Partially Logistic Regression Model with Exact Inputs and Intuitionistic Fuzzy Output Applied, Soft Computing, 58, 517-526. [DOI:10.1016/j.asoc.2017.04.067]
8. Hesamian, G. and Akbari, M. G. (2022), A Fuzzy Empirical Quantile-Based Regression Model Based on Triangular Fuzzy Numbers, Computational and Applied Mathematics, 41(6), 1-26 [DOI:10.1007/s40314-022-01974-4]
9. Joo, S. Y., and Kim, Y. K. (2001), Kolmogorov's Strong Law of Large Numbers for Fuzzy Random Variables, Fuzzy Sets and Systems, 120(3), 499-503. [DOI:10.1016/S0165-0114(99)00140-2]
10. Lee, K. H. (2005), First Course on Fuzzy Theory and Applications, Berlin: Springer.
11. Mirzaei Yeganeh, S., and Taheri, S.M. (2010), Possibilistic Logistic Regression by Linear Programming Approach, Proc of 7th Probability and Random Process, Isfahan University of Technology, Isfahan, Iran, 139-143.
12. Moghimbeygi, M. (2023), Semiparametric Multinomial Logistic Regression Model to Classify‎ ‎Shape Data, Journal of Statistical Sciences, 16(2), 449-468. [DOI:10.52547/jss.16.2.449]
13. Mohd Dom, R. (2009), A Fuzzy Regression Model for The Prediction of Oral Cancer Susceptibility. Ph.D. Thesis, Computer Science and Information Technology, University of Malaya, Kualalumpur.
14. Manski, C., and McFadden, D. (1981), Alternative Estimators and Sample Designs for Discrete Choice Analysis. In: Manski, McFadden, Editors, Structural Analysis of Discrete Data with Econometric Applications, London: MIT Press.
15. Nagar, P., and Srivastava, S. (2008), Adaptive Fuzzy Regression Model for The Prediction of Dichotomous Response Variables Using Cancer Data: A Case Study, Journal of Applied Mathematics Statistics and Informatics, 4, 183-191.
16. Namdari, M., Taheri, S.M., Abadi, A., Rezaei, M., and Kalantari, N. (2013), Possibilistic Logistic Regression for Fuzzy Categorical Response Data, International Conference on Fuzzy Systems, 8, 1-6. [DOI:10.1109/FUZZ-IEEE.2013.6622457] [PMID]
17. Namdari, M., Yoon, J. H., Abadi, A., Taheri, S. M., and Choi, S. H. (2015), Fuzzy Logistic Regression with Least Absolute Deviations Estimators, Soft Computing, 19, 909-917. [DOI:10.1007/s00500-014-1418-2]
18. Pourahmad, S., Ayatollahi, S. M. T., Taheri, S. M., and Agahi, Z. H. (2011.a), Fuzzy Logistic Regression Based on The Least Squares Approach with Application in Clinical Studies, Computer Mathematics Applications, 62, 3353-3365. [DOI:10.1016/j.camwa.2011.08.050]
19. Pourahmad, S., Ayatollahi, S. M., and Taheri, S. M. (2011.b), Fuzzy Logistic Regression, A New Possibilistic Regression and Its Application in Clinical Vague Status, Iranian Journal of Fuzzy Systems, 8, 1-17.
20. Puri, M. L., and Ralescu, D. A. (1986), Fuzzy Random Variables, Journal of Mathematical Analysis and Applications, 114, 409-422. [DOI:10.1016/0022-247X(86)90093-4]
21. Salmani, F., Taheri, S. M., Yoon, J. H., Abadi, A., Alavi Majd, H., and Abbaszadeh, A. (2017), Logistic Regression for Fuzzy Covariates: Modeling, Inference and Applications, International Journal of Fuzzy Systems, 19, 1635-1644. [DOI:10.1007/s40815-016-0258-x]
22. Taheri, S. M., and Mirzaei Yeganeh, S. (2009), Logistic Regression with Non-Precise Response,
23. Proceedings of The 57th ISI Conference, Durban, South Africa, 98-101.
24. Takemura, K. (2004), Fuzzy Logistic Regression Analysis for Fuzzy Input -Output Data, International Conference on Soft Computing and Intelligent Systems and the 5th International Symposium on Advanced Intelligent Systems, Japan, 1-6.
25. Tseng, F., and Lin, L. (2005), A Quadratic Interval Logit Model for Forecasting Bankruptcy, Omega, 33, 85-91. [DOI:10.1016/j.omega.2004.04.002]
26. Yu, J. R., and Tseng, F. M. (2014), Fuzzy Piecewise Logistic Growth Model for Innovation Diffusion: A Case Study of The TV Industry, International Journal of Fuzzy Systems, 18, 1-12. [DOI:10.1007/s40815-015-0066-8]
27. Xu, R., and Li, C. (2001), Multidimensional Least-Squares Fitting with A Fuzzy Model, Fuzzy Sets and Systems, 119(2), 215-223. [DOI:10.1016/S0165-0114(98)00350-9]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki M, Nili-Sani H R, AkBARI M. Fuzzy Multiple Logistic Regression Under Fuzzy Random Errors. JSS 2025; 18 (2)
URL: http://jss.irstat.ir/article-1-882-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 2 (2-2025) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4700