1. Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009), Pair-copula Constructions of Multiple Dependence, Insurance: Mathematics and economics, 44(2), 182-198. [ DOI:10.1016/j.insmatheco.2007.02.001] 2. Acharya, Viral and Brownlees, Christian and Engle, Robert and Farazmand, Farhang and Richardson, Matthew and others, (2013), Measuring Systemic Risk, [ DOI:10.1017/CBO9781139151184.012] 3. Aghamohammadi, A, Sojoudi, M. (2017), Estimating Value-at-Risk and Average Value-at-Risk Measures Using Composite Quantile Regression, Journal of Statistical Sciences, 10(2), 185-202. [ DOI:10.18869/acadpub.jss.10.2.185] 4. Managing and Measuring Risk: Emerging Global Standards and Regulation after the Financial Crisis, 65-98. 5. Adrian, T., and Brunnermeier, M. K., (2011), CoVaR, National Bureau of Economic Research, (No.w17454). [ DOI:10.3386/w17454] 6. Benston and George G. Kaufman (1986), Risks and Failures in Banking: Overview, History, and Evaluation, Federal Reserve Bank of Chicago. 7. Bluhm, C., Overbeck, L., and Wagner, C., (2016) Introduction to Credit Risk Modeling, Chapman and Hall/CRC. [ DOI:10.1201/9781584889939] 8. Bollerslev, T., (1990), Modelling the Coherence in Short-run Nominal Exchange Rates: a Multivariate Generalized ARCH Model, The review of economics and statistics, 498-505 . [ DOI:10.2307/2109358] 9. Engle, R., (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingrom Inflation, Econometrica, 50, 391-407. [ DOI:10.2307/1912773] 10. Engle, R. F., and Bollerslev, T., (1986), Modelling the Persistence of Conditional Variances, Econometric Reviews, 5(1), 1-50 [ DOI:10.1080/07474938608800095] 11. Engle, R., (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business and Economic Statistics, 20(3), 339-350. [ DOI:10.1198/073500102288618487] 12. Girardi, G., and Ergün, A. T., (2013), Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR, Journal of Banking and Finance, 37(8), 3169-3180. [ DOI:10.1016/j.jbankfin.2013.02.027] 13. Grziska, M., (2014), Multivariate GARCH and Dynamic Copula Models for Financial Time Series, Doctoral Dissertation, LMU. 14. Hansen, B. E., (1994), Autoregressive Conditional Density Estimation, International Economic Review, 705-730. [ DOI:10.2307/2527081] 15. Huang, X., Zhou, H., and Zhu, H., (2009), A Framework for Assessing the Systemic Risk of Major Financial Institutions, Journal of Banking and Finance, 33(11), 2036-2049. [ DOI:10.1016/j.jbankfin.2009.05.017] 16. Keilbar, G., and Wang, W., (2022), Modelling Systemic Risk Using Neural Network Quantile Regression, Empirical Economics, 62 (1), 93-118. [ DOI:10.1007/s00181-021-02035-1] 17. Mosammam, A. M., (2015), Kalman Filter: A Simple Derivation, Mathematics and Statistics, 3, 41-45. [ DOI:10.13189/ms.2015.030203] 18. Nelsen, R. B., (2006), An Introduction to Copulas, Springer, USA. 19. Patton, A. J., (2009), Copula-Based Models for Financial Time Series, Handbook of Financial Time Series, Berlin, Heidelberg: Springer Berlin Heidelberg. [ DOI:10.1007/978-3-540-71297-8_34] 20. Poon, S. H., and Taylor, S. J., (1992), Stock Returns and Volatility: An Empirical Study of the UK Stock Market, Journal of Banking and Finance, 16(1), 37-59. [ DOI:10.1016/0378-4266(92)90077-D] 21. Reboredo, J. C., and Ugolini, A., (2016), Systemic Risk of Spanish Listed Banks: A Vine Copula CoVaR Approach, Spanish Journal of Finance and Accounting/Revista Española de Financiación y Contabilidad, 45(1), 1-31 . [ DOI:10.1080/02102412.2015.1092231] 22. Saputra, M. D., Hadi, A. F., Riski, A., and Anggraeni, D., (2021), Handling Missing Values and Unusual Observations in Statistical Downscaling Using Kalman [ DOI:10.1088/1742-6596/1863/1/012035] 23. Filter, International Journal of Quantitative Research and Modeling 2(3), 139-146. 24. Segoviano Basurto, M., and Goodhart, C., (2009), Banking stability measures, Financial Markets Group, The London School of Economics and Political Science. 25. Shumway, R. H., Stoffer, D. S., and Stoffer, D. S., (2000), Time series analysis and its applications, 3, New York: springer. [ DOI:10.1007/978-1-4757-3261-0]
|