1. Birnbaum, Z. W., and Saunders, S. C. (1969), A New Family of Life Distributions, Journal of Applied Probability, 6 (2), 319-327. 3. Chang, S. T. and Lu, K. P. (2016), Change-Point Detection for Shifts in Control Charts Using EM Change-Point Algorithms, Quality and Reliability Engineering International, 32, 889-900. 5. Chang, S. T, Lu, K. P. and Yang, M. S. (2015), Fuzzy Change-Point Algorithms for Regression Models, IEEE Transactions on Fuzzy Systems, 23 (6), 2343-2357. 7. Chen, C. W. S., Chan, J. S., Gerlach K. R., and Hsieh, W. Y. L. (2011), A Comparison of Estimators for Regression Models with Change Points, Statistics and Computing, 21, 395-414. 9. Ciuperca, G. (2009), The M-Estimation in a Multi-Phase Random Nonlinear Model, Statistics & Probability Letters, 75, 573-580. 11. Ciuperca, G. (2011), A General Criterion to Determine the Number of Change-Points, Statistics & Probability Letters, 81, 1267-1275. 13. Ciuperca, G. (2004), Maximum Likelihood Estimator in a Two-Phase Nonlinear Regression Model, Statistics & Decisions, 22, 335-349. 15. Ciuperca, G. and Dapzol, N. (2008), Maximum Likelihood Estimator in a Multi-Phase Random Regression Model, Statistics, 42, 363-381 17. Dempster, A. P., Laird N. M., and Rubin D. B. (1977), Maximum Likelihood From Incomplete 18. Data via the EM-Algorithm, Journal of the Royal Statistical Society. Series B (methodological), 39, 1-38. 20. Fearnhead, P. (2006), Exact and Efficient Bayesian Inference for Multiple Change-Point Problems, Statistics and Computing, 16, 203-213. 22. Jafari, F. and Golalizadeh, M. (2024), Double Penalized Mixed Effects Quantile Regression Modeling Using the Maximum Likelihood Approach, Journal of Statistical Sciences, 17(2), 389-405. 24. Jalili, M., Bashiri, M., Manteghi, M. and Tofigh, A. A. (2017). Development of a Piecemeal Regression-Based Approach for Monitoring Multiple Linear Profiles with Phase Interactions. Journal of Quality Engineering and Management, 6(4), 237-249. 26. Julious, S. A. (2001). Inference and Estimation in a Change Point Regression Problem, Journal of the Royal Statistical Society Series D, 50, 51-61. 28. Karl, T.R., Knight, R.W. and Baker, B. (2000), The Record Breaking Global Temperatures of 1997 and 1998: Evidence for an Increase in the Rate of Global Warming?, Geophysical Research Letters, 27 (5), 719-722 30. Keshavarz, M. and Huang, B. (2014a), Bayesian and Expectation Maximization Methods for Multivariate Change-Point Detection, Computers & Chemical Engineering, 60, 339-353. 32. Keshavarz M. and Huang, B. (2014b), Expectation Maximization Method for Multivariate Change-Point Detection in Presence of Unknown and Changing Covariance, Computers & Chemical Engineering, 69, 128-146. 34. Loschi, R. H., Pontel, J. G. and Cruz F. R. B. (2010), Multiple Change-Point Analysis for Linear Regression models, Chilean Journal of Statistics, 1, 93-112. 36. Lu, K. P., and Chang, S. T. (2021), Robust Algorithms for Change-Point Regressions Using the t-Distribution, Mathematics, 9, 2394. 38. Menne, J. M. (2005), Abrupt Global Temperature Change and the Instrumental Record, In: Record, 18th Conference on Climate Variability and Change. 40. Muggeo, V. M. R. (2008), Segmented: an R package to Fit Regression Models with Broken-Line Relationships, R News, 8, 20-25. 42. von Ottenbreit, M., and De Bin, R. (2024), Automatic Piecewise Linear regression, Computational Statistics, 1-41. 44. Yang, F. (2014), Robust Mean Change-Point Detecting Through Laplace Linear Regression Using EM Algorithm, Journal of Applied Mathematics, 2014 (1): 856350. 46. Yildirim S., Singh S.S., and Doucet A. (2014), An Online Expectation-Maximization Algorithm for Change-Point Models, Journal of Computational and Graphical Statistics, 22(4), 906-26.
|