[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Modeling error distribution in accelerated failure time models using a Dirichlet processes mixture model with the Burr XII distribution as the kernel
Bahram Haji joudaki , Soliman Khazaei * , Reza Hashemi
Abstract:   (284 Views)
Accelerated failure time models are used in survival analysis when the data is censored, especially when combined with auxiliary variables. When the models in question depend on an unknown parameter, one of the methods that can be applied is Bayesian methods, which consider the parameter space as infinitely dimensional. In this framework, the Dirichlet process mixture model plays an important role. In this paper, a Dirichlet process mixture model with the Burr XII distribution as the kernel is considered for modeling the survival distribution in the accelerated failure time. Then, MCMC methods were employed to generate samples from the posterior distribution. The performance of the proposed model is compared with the Polya tree mixture models based on simulated and real data. The results obtained show that the proposed model performs better.
Keywords: Mixture Model, Accelerated Failure Time Model, Dirichlet Process, Burr XII Distribution, Censored Data, MCMC.
Full-Text [PDF 2546 kb]   (153 Downloads)    
Type of Study: Applied | Subject: Statistical Inference
Received: 2024/09/19 | Accepted: 2024/08/31
References
1. Al-Hussaini, E. K., and Jaheen, Z. F. (1992), Bayesian Estimation of the Parameters, Reliability and Failure Rate Functions of the Burr Type XII Failure Model, Journal of statistical computation and simulation, 41(1-2), 31-40. [DOI:10.1080/00949659208811389]
2. Antoniak, C.E. (1974), Mixtures of Dirichlet Processes with Applications to Nonparametric Problems, The Annals of Statistics, 2, 1152-1174. [DOI:10.1214/aos/1176342871]
3. Blackwell, D., and MacQueen, J. B. (1973), Ferguson Distributions via Polya Urn Schemes, The Annals of Statistics, 1(2), 353--355. [DOI:10.1214/aos/1176342372]
4. Bolte, B., Schmidt, N., Béjar, S., Huynh, N., and Mukherjee, B. (2021), BayesSPsurv: An R Package to Estimate Bayesian (Spatial) Split-Population Survival Models, R Journal, 13(1). [DOI:10.32614/RJ-2021-068]
5. Burr, I. W. (1942), Cumulative Frequency Functions, The Annals of mathematical statistics, 13(2), 215--232. [DOI:10.1214/aoms/1177731607]
6. Cheng, N., and Yuan,T. (2013), Nonparametric Bayesian Lifetime Data Analysis Using Dirichlet Process Lognormal Mixture Model, Naval Research Logistics, 60(3), 208--221. [DOI:10.1002/nav.21529]
7. Christensen, R., and Johnson, W. (1988), Modelling Accelerated Failure Time with a Dirichlet Process, Biometrika, 75(4), 693--704. [DOI:10.1093/biomet/75.4.693]
8. Damien, P., Wakefield, J., and Walker, S. (1999), Gibbs Sampling for Bayesian Non-conjugate and Hierarchical Models by Using Auxiliary Variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 331--344. [DOI:10.1111/1467-9868.00179]
9. Escobar, M.D., and West, M. (1995), Bayesian Density Estimation and Inference Using Mixtures, Journal of the American Statistical Association, 90(430), 577-588. [DOI:10.1080/01621459.1995.10476550]
10. Ferguson,T.S. (1973), Bayesian Analysis of Some Nonparametric Problems, The Annals of Statistics, 1 (2), 209--230. [DOI:10.1214/aos/1176342360]
11. Ferguson,T.S., and Phadia, E. G. (1979), Bayesian Nonparametric Estimation Based on Censored Data, The Annals of Statistics, 163-186. [DOI:10.1214/aos/1176344562]
12. Geisser, S., and Eddy, W. (1979), A Predictive Approach to Model Selection, Journal of the American Statistical Association, 74, 153-160. [DOI:10.1080/01621459.1979.10481632]
13. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., and Rubin, D.B. (2013), Bayesian Data Analysis, Chapman and Hall/CRC. [DOI:10.1201/b16018]
14. Ghosh,J.K., and Ramamoorthi,R.V. (2003), Bayesian Nonparametrics, Springer Series in Statistics, Springer-Verlag, New York.
15. Ghosh, S. K., and Ghosal, S. (2006), Semiparametric Accelerated Failure Time Models for Censored Data, Bayesian statistics and its applications, 15, 213--229.
16. G'omez, G., Calle, M. L., Oller, R., and Langohr, K. (2009), Tutorial on Methods for Interval-Censored Data and their Implementation in R, Statistical Modelling, 9 (4), 259--297. [DOI:10.1177/1471082X0900900402]
17. Haji Joudaki, B., Hashemi, R., and Khazaei, S. (2022), Survival Analysis Using Dirichlet Process Mixture Model with Three-Parameter Burr XII Distribution as Kernel, Communications in Statistics-Simulation and Computation, 53(5), 2406--2424. [DOI:10.1080/03610918.2022.2076868]
18. Hanson, T., and Johnson, W. (2002), Modeling Regression Error with a Mixture of Polya Trees, Journal of the American Statistical Association, 97(460), 1020--1033. [DOI:10.1198/016214502388618843]
19. Hanson, T., and Johnson, W. (2004), A Bayesian Semiparametric AFT Model for Interval-Censored Data, Journal of Computational and Graphical Statistics, 13(2), 341--361. [DOI:10.1198/1061860043489]
20. Hanson,T. (2006), Modeling Censored Lifetime Data Using a Mixture of Gammas Baseline, Bayesian Analysis, 1(3), 575--594. [DOI:10.1214/06-BA119]
21. Hanson,T. (2006), Inference for Mixtures of Finite Polya Tree Models, Journal of the American Statistical Association, 101(476), 1548--1565. [DOI:10.1198/016214506000000384]
22. Hanson, T., and Yang, M. (2007), Bayesian Semiparametric Proportional Odds Models, Biometrics, 63(1), 88-95. [DOI:10.1111/j.1541-0420.2006.00671.x] [PMID]
23. Hanson,T. (2014), Polya Trees and their Use in Reliability and Survival Analysis, Wiley StatsRef: Statistics Reference Online. [DOI:10.1002/9781118445112.stat04201]
24. Johnson, W., and Christensen, R. (1989), Nonparametric Bayesian Analysis of the Accelerated Failure Time Model, Statistics & Probability Letters, 8(2), 179--184. [DOI:10.1016/0167-7152(89)90014-X]
25. Kalbfleisch, J. D., and Prentice, R. L. (2011), The Statistical Analysis of Failure Time Data, John Wiley and Sons, New York.
26. Kottas, A. (2006), Nonparametric Bayesian Survival Analysis Using Mixtures of Weibull Distributions, Statistical Planning and Inference, 136(3), 578--596. [DOI:10.1016/j.jspi.2004.08.009]
27. Kottas, A. (2006), Dirichlet Process Mixtures of Beta Distributions, with Applications to Density and Intensity Estimation, In Workshop on Learning with Nonparametric Bayesian Methods, 23rd International Conference on Machine Learning (ICML), 47.
28. Kuo, L., and Mallick, B. (1997), Bayesian Semiparametric Inference for the Accelerated Failure Time Model, Canadian Journal of Statistics, 25(4), 457--472. [DOI:10.2307/3315341]
29. Lahiri, P., and Park, D.H. (2000), Nonparametric Bayes and Empirical Bayes Estimators of Mean Residual Life at Age t, Journal of Statistical Planning and Inference, 29(1-2), 125--136. [DOI:10.1016/0378-3758(92)90127-E]
30. Lawless, J. F. (2011), Statistical Models and Methods for Lifetime Data, John Wiley and Sons, New York.
31. Neal, R.M. (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models, Journal of Computational and Graphical Statistics, 9(2), 249--265. [DOI:10.1080/10618600.2000.10474879]
32. Okasha, M.K., and Matter, M.Y. (2015), On the Three-Parameter Burr Type XII Distribution and its Application to Heavy Tailed Lifetime Data, Journal of Advances in Mathematics, 10(4), 3429--3442.
33. Sethuraman, J. (1994), A Constructive Definition of Dirichlet Priors, Statistica Sinica, 639--650.
34. Susarla,V., and Van Ryzin, J. (1976), Nonparametric Bayesian Estimation of Survival Curves from Incomplete Observations, Journal of the American Statistical Association, 71, 897--902. [DOI:10.1080/01621459.1976.10480966]
35. Walker, S., and Mallick, B. (1999), A Bayesian Semiparametric Accelerated Failure Time Model, Biometrics, 55(2), 477--483. [DOI:10.1111/j.0006-341X.1999.00477.x] [PMID]
36. Zhao, L., Hanson, T., and Carlin, B. P. (2009), Mixtures of Polya Trees for Flexible Spatial Frailty Survival Modelling, Biometrika, 96(2), 263--276. [DOI:10.1093/biomet/asp014] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.06 seconds with 43 queries by YEKTAWEB 4700