[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Entropy and Extropy of the Wavelet Energy Distribution in Reciprocal Fractal Systems
Alireza Pakgohar * , Soheil Shokri
Abstract:   (19 Views)
This study investigates the wavelet energy distribution in high-frequency fractal systems and analyzes its characteristics using information-theoretic measures. The main innovation of this paper lies in modeling the wavelet energy distribution ($p_j$) using a truncated geometric distribution and incorporating the concept of extropy to quantify system complexity. It is demonstrated that this distribution is strongly influenced by the fractal parameter $alpha$ and the number of decomposition levels $M$. By computing wavelet entropy and extropy as measures of disorder and information, respectively—the study provides a quantitative analysis of the complexity of these systems. The paper further examines key properties of this distribution, including its convergence to geometric, uniform, and degenerate distributions under limiting conditions (e.g., $M to infty$ or $alpha to 0$). Results indicate that entropy and extropy serve as complementary tools for a comprehensive description of system behavior: while entropy measures disorder, extropy reflects the degree of information and certainty. This approach establishes a novel framework for analyzing real-world signals with varying parameters and holds potential applications in the analysis of fractal signals and modeling of complex systems in fields such as finance and biology.

To validate the theoretical findings, synthetic fractal signals (fractional Brownian motion) with varying fractal parameters ($alpha$) and decomposition levels ($M$) were simulated. Numerical results show that wavelet entropy increases significantly with the number of decomposition levels ($M$), whereas extropy exhibits slower growth and saturates at higher decomposition levels. These findings underscore the importance of selecting an appropriate decomposition level. The proposed combined framework offers a powerful tool for analyzing and modeling complex, non-stationary systems in domains such as finance and biology.
Keywords: Wavelet Energy, Wavelet Entropy, Wavelet Extropy, Truncated Geometric Distribution, Reciprocal Fractal Systems.
Full-Text [PDF 246 kb]   (17 Downloads)    
Type of Study: Research | Subject: Reliability
Received: 2025/01/19 | Accepted: 2026/09/1
References
1. آشورزاده، م.، بیگلری، ع. (1400)، تشخیص آسیب چندگانه در سازه با استفاده از روش آنتروپی موجک گسسته، نشریه مهندسی عمران فردوسی، (2)، 1-15.
2. افشاری، م.، بازیاری، الف. مرادیان، ی. کرمی کبیر، ح. (1399)، برآوردگرهای بیزی آستانه موجک برای تابع رگرسیون ناپارامتری بر اساس توزیع پیشین آمیخته، مجله علوم آماری، 14(2)، 287-306.
3. ایران‌منش، الف.، اولیاء‌زاده، ف.، فکور، و. (1400)، برآورد آنتروپی گذشته در داده‌های طول-اریب، مجله علوم آمار، 15(2)، 363-380.
4. شیرازی، الف. (1399)، برآورد موجکی تابع چگالی چندک به روش آستانه‌ای بلوکی تحت تابع زیان L۲، مجله علوم آماری، 14(1)، 195-214.
5. Afshari, M., Bazyari, A., Moradian, Y. and Karami Kabir, H. (2021), The Bayesian Wavelet Thresholding Estimators of Nonparametric Regression Model Based on Mixture Prior Distribution, Journal of Statistical Sciences, 14(2), 287-306. [DOI:10.29252/jss.14.2.3]
6. Ashoorzade, M. and Bigleri, A. (2021), Structures Multi-Damage Detection by Discrete Wavelet Entropy Method, Ferdowsi Civil Engineering, 34(2), 1-16.
7. DiCrescenzo, A., and Longobardi, M. (2004), A Measure of Discrimination Between Past Lifetime Distributions, Statistics and Probability Letters, 67(2), 173-182. [DOI:10.1016/j.spl.2003.11.019]
8. Huang, H., and Instruments, T. R. (2025), The Theory of Infirmity: A Novel Probability Framework, Algebra, Geometry and Probability Theory, 80(1), 53-59. [DOI:10.17721/1812-5409.2025/1.7] [PMID]
9. Iranmanesh, A., Oliazadeh, F., Fakoor, V. (2022), Estimation of Past Entropy in Length-Biased Data, Journal of Statistical Sciences, 15(2), 363-380. [DOI:10.52547/jss.15.2.363]
10. Lad, F., Sanfilippo, G., and Agrò, G. (2015), Extropy: Complementary Dual of Entropy, Statistical Science, 30(1). [DOI:10.1214/14-STS430]
11. Ramirez-Pacheco, Julio. (2025). Wavelet Extropy of Fractal Signals, Revista Mexicana de Física E, 22.1 Jan-Jun: 010211-1. [DOI:10.31349/RevMexFisE.22.010211]
12. Shirazi E. (2020). Wavelet-Based Quantile Density Estimation by Block Thresholding Method Under L2 Loss Function. Journal of Statistical Sciences, 14(1), 195-214. [DOI:10.29252/jss.14.1.197]
13. Wojnowicz, M., Chisholm, G., Wolff, M., and Zhao, X. (2016), Wavelet Decomposition of Software Entropy Reveals Symptoms of Malicious Code, Journal of Innovation in Digital Ecosystems, 3(2), 130-140. [DOI:10.1016/j.jides.2016.10.009]
14. Yousefzadeh, F, and Pakgohar, A. (2022). Some Properties of Quantile Past Lifetime Extropy, Proceeding of the 8th Seminar on Reliability Theory and its Applications, Ferdowsi University of Mashhad, Mashhad, Iran, pp: 229-240.
15. Zunino, L., Pérez, D. G., Garavaglia, M., and Rosso, O. A. (2007), Wavelet Entropy of Stochastic Processes, Physica A: Statistical Mechanics and its Applications, 379(2), 503-512. [DOI:10.1016/j.physa.2006.12.057]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.17 seconds with 45 queries by YEKTAWEB 4722