1. خوارزمی، ا. و علیزاده، م. (۱۳۹۹). اندازههای اطلاع جنسن-فیشر و جنسن-کایدو برای توزیعهای آمیخته متناهی، مجله مدلسازی پیشرفته ریاضی، 11، 1-15.. 2. Ahrari, V., & Habibirad, A. (2019). Quantile Based Tsallis Residual Entropy and its Divergence Measure. Journal of Statistical Sciences, 12(2), 295-321. [ DOI:10.29252/jss.12.2.295] 3. Anjali, & Gupta, A. (2025). A Novel Shannon Entropy-Based Backward Cloud Model and Cloud K-Means Clustering. The Journal of Supercomputing, 81(1), 65. [ DOI:10.1007/s11227-024-06528-5] 4. Basu, A., Harris, I. R., Hjort, N. L., & Jones, M. C. (1998). Robust and Efficient Estimation by Minimizing a Density Power Divergence. Biometrika, 85, 549-559. [ DOI:10.1093/biomet/85.3.549] 5. Bercher, J. F. (2009). Source Coding with Escort Distributions and Rényi Entropy Bounds. Physics Letters A, 36, 3235-3238. [ DOI:10.1016/j.physleta.2009.07.015] 6. Bercher, J. F. (2013). Some Properties of Generalized Fisher Information in the Context of Nonextensive Thermostatistics. Journal of Physics A: Mathematical and Theoretical, 392, 3140-3154. [ DOI:10.1016/j.physa.2013.03.062] 7. Bruni, V., Rossi, E., & Vitulano, D. (2013). Jensen-Shannon Divergence for Visual Quality Assessment. Signal, Image and Video Processing, 7, 411-421. [ DOI:10.1007/s11760-013-0444-3] 8. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. John Wiley & Sons, Hoboken. 9. Eskicioglu, A. M., & Fisher, P. S. (1995). Image Quality Measures and Their Performance. IEEE Transactions on Communications, 43, 2959-2965. [ DOI:10.1109/26.477498] 10. Gonzalez, R. C. (2009). Digital Image Processing. Prentice-Hall, New York. 11. Gray, R. M. (2011). Entropy and Information Theory. Springer Science & Business Media, New York. [ DOI:10.1007/978-1-4419-7970-4] 12. Kaehler, A., & Bradski, G. (2016). Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O'Reilly Media, Sebastopol. 13. Kharazmi, O., & Alizadeh, M. (2020). Jensen-Fisher and Jensen-χ_α^2 Information Measures for Finite Mixture Distributions. Journal of Advanced Mathematical Modeling, 11, 1-15. 14. Kharazmi, O., & Balakrishnan, N. (2021a). Jensen-Information Generating Function and Its Connections to Some Well-Known Information Measures. Statistics & Probability Letters, 170, 108995. [ DOI:10.1016/j.spl.2020.108995] 15. Kharazmi, O., & Balakrishnan, N. (2021b). Discrete Versions of Jensen-Fisher, Fisher and Bayes-Fisher Information Measures of Finite Mixture Distributions. Entropy, 23, 363. [ DOI:10.3390/e23030363] [ PMID] [ ] 16. Kharazmi, O., & Balakrishnan, N. (2021c). Cumulative Residual and Relative Cumulative Residual Fisher Information and Their Properties. IEEE Transactions on Information Theory, 67(10), 6306-6312. [ DOI:10.1109/TIT.2021.3073789] 17. Kharazmi, O., Balakrishnan, N., & Ozonur, D. (2023a). Jensen-Discrete Information Generating Function with an Application to Image Processing. Soft Computing, 27, 4543-4552. [ DOI:10.1007/s00500-023-07863-0] 18. Kharazmi, O., Contreras-Reyes, J. E., & Balakrishnan, N. (2023b). Jensen-Fisher Information and Jensen-Shannon Entropy Measures Based on Complementary Discrete Distributions with an Application to Conway's Game of Life. Physica D, 453, 133822. [ DOI:10.1016/j.physd.2023.133822] 19. Kharazmi, O., Contreras-Reyes, J. E., & Balakrishnan, N. (2023c). Optimal Information, Jensen-RIG Function and α-Onicescu's Correlation Coefficient in Terms of Information Generating Functions. Physica A: Statistical Mechanics and Its Applications, 609, 128362. [ DOI:10.1016/j.physa.2022.128362] 20. Kharazmi, O., & Balakrishnan, N. (2024a). On Jensen-χ_α^2 Divergence Measure. Probability in the Engineering and Informational Sciences, 38, 403-427. [ DOI:10.1017/S0269964823000189] 21. Kharazmi, O., & Balakrishnan, N. (2024b). Fisher and Bayes-Fisher Information Measures for Finite Mixture Distributions. Stochastic Models. DOI:
https://doi.org/10.1080/15326349.2024.2355537 [ DOI:10.1080/15326349.2024.2355537.] 22. Kharazmi, O., Contreras-Reyes, J. E., & Basirpour, M. B. (2024c). Jensen-Variance Distance Measure: A Unified Framework for Statistical and Information Measures. Computational and Applied Mathematics, 43, 144. [ DOI:10.1007/s40314-024-02666-x] 23. Lin, J. (1991). Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory, 37, 145-151. [ DOI:10.1109/18.61115] 24. Melbourne, J., Talukdar, S., Bhaban, S., Madiman, M., & Salapaka, M. V. (2022). The Differential Entropy of Mixtures: New Bounds and Applications. IEEE Transactions on Information Theory, 68, 2123-2146. [ DOI:10.1109/TIT.2022.3140661] 25. Navarro, J., Buono, F., & Arevalillo, J. M. (2023). A New Separation Index and Classification Techniques Based on Shannon Entropy. Methodology and Computing in Applied Probability, 25(4), 78. [ DOI:10.1007/s11009-023-10055-w] 26. Nielsen, F., & Nock, R. (2013). On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences. IEEE Signal Processing Letters, 21, 10-13. [ DOI:10.1109/LSP.2013.2288355] 27. Sanei Tabass, M., & Mohtashami Borzadaran, G. (2017). The Generalization of Maximum Entropy Principle for Generalized Information Measures. Journal of Statistical Sciences, 11(1), 101-118. [ DOI:10.29252/jss.11.1.101] 28. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x [ DOI:10.1002/j.1538-7305.1948.tb01338.x] 29. Steele, J. M. (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, Cambridge. [ DOI:10.1017/CBO9780511817106] 30. Sourati, J., Gholipour, A., Dy, J. G., Tomas-Fernandez, X., Kurugol, S., & Warfield, S. K. (2019). Intelligent Labeling Based on Fisher Information for Medical Image Segmentation Using Deep Learning. IEEE Transactions on Medical Imaging, 38(11), 2642-2653. [ DOI:10.1109/TMI.2019.2907805] [ PMID] [ ] 31. Wang, S., & Fan, J. (2024). Image Thresholding Method Based on Tsallis Entropy Correlation. Multimedia Tools and Applications, 1-37. [ DOI:10.1007/s11042-024-19332-3] 32. Wang, N., Zhang, H., Kong, X., & Xu, D. (2025). Explicit Entropy Error Bound for Compressive DOA Estimation in Sensor Array. Digital Signal Processing, 156, 104785. [ DOI:10.1016/j.dsp.2024.104785] 33. Woods, R. E., & Gonzalez, R. C. (2001). Digital Image Processing (3rd ed.). Computer Science E-Books.
|