1. آریاییفر، س. (1397). تأثیر تیمار هیپوکلریت سدیم بر شاخصهای طولی گیاهچه. مقاله ارائهشده در هفتمین کنفرانس ملی مرتع، 19 اردیبهشت 1397، تهران، ایران. مرتعداری ایران، 18. 2. چاچی، ج.، و حسامیان، غ. (1392). مدلبندی دادههای فازی با رگرسیون اسپلاین تطبیقی چندگانه. نشریه علمی-پژوهشی انجمن آمار ایران، مجله علوم آماری، 8(1)، 1-18. 3. قبادی، ش.، و جوانمرد، م. (1385). طراحی و تحلیل آزمایشها در محیط فازی. مقاله ارائهشده در اولین کنفرانس ملی نگهداری و تعمیرات. 4. Akbari, M. G., & Hesamian, G. (2019). Elastic Net Oriented to a Fuzzy Semiparametric Regression Model with Fuzzy Explanatory Variables and Fuzzy Responses. IEEE Transactions on Fuzzy Systems, 27(12), 2433-2442. [ DOI:10.1109/TFUZZ.2019.2900603] 5. Aryanifar, S. (2018). The effect of sodium hypochlorite treatment on longitudinal indices of seedling. The 7th National Conference on Rangeland and Rangeland Management of Iran, Tehran, Iran. 6. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons. 7. Bhatti, S. H., Khan, F. W., Irfan, M., & Raza, M. A. (2023). An Effective Approach Towards Efficient Estimation of General Linear Model in Case of Heteroscedastic Errors. Communications in Statistics-Simulation and Computation. [ DOI:10.1080/03610918.2020.1856874] 8. Chachi, J., & Hesamian, G. (2014). Modeling fuzzy data with multiple adaptive spline regression. Journal of Statistical Sciences - Iranian Statistical Society Publication, 8(1), 1-18. 9. Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. [ DOI:10.1201/9780429246593] 10. Fisher, R. A. (1935). The Design of Experiments. Oliver and Boyd. 11. Farnoosh, R., Ghasemian, J., & Solaymanifard, O. (2012). Integrating Ridge-Type Regularization in Fuzzy Nonlinear Regression. Computational and Applied Mathematics, 31, 323-338. [ DOI:10.1590/S1807-03022012000200006] 12. Ghobadi, S., & Javanmard, M. (2006). Design and analysis of experiments in fuzzy environment. First National Conference on Maintenance and Repair. 13. Hesamian, G., & Akbari, M. G. (2020). A Robust Multiple Regression Model Based on Fuzzy Random Variables. Journal of Computational and Applied Mathematics, 371, 112704. [ DOI:10.1016/j.cam.2019.112704] 14. Kacprzyk, J., & Fedrizzi, M. (Eds.). (1992). Fuzzy Regression Analysis (2nd ed.). Springer-Verlag. 15. Khammar, A. H., Arefi, M., & Akbari, M. G. (2020). A Robust Least Squares Fuzzy Regression Model Based on Kernel Function. Iranian Journal of Fuzzy Systems, 17(4), 105-119. 16. Kashani, M., Arashi, M., & Rabiei, M. R. (2021). Resampling in Fuzzy Regression via Jackknife-after-Bootstrap (JB). International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 29(4), 517-535. [ DOI:10.1142/S0218488521500227] 17. Lambert-Lacroix, S., & Zwald, L. (2011). Robust Regression Through the Huber's Criterion and Adaptive Lasso Penalty. Electronic Journal of Statistics, 5, 1015-1053. [ DOI:10.1214/11-EJS635] 18. Lee, W. J., Jung, H. Y., Yoon, J. H., & et al. (2015). The Statistical Inferences of Fuzzy Regression Based on Bootstrap Techniques. Soft Computing, 19, 883-890. [ DOI:10.1007/s00500-014-1415-5] 19. Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data (3rd ed.). Wiley. [ DOI:10.1002/9781119482260] 20. Melkumova, L., & Shatskikh, S. (2017). Comparing Ridge and Lasso Estimators for Data Analysis. Procedia Engineering, 201, 746-755. [ DOI:10.1016/j.proeng.2017.09.615] 21. Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons. 22. Ross, T. J. (2010). Fuzzy Logic with Engineering Applications. John Wiley & Sons. [ DOI:10.1002/9781119994374] 23. Saleh, A. K. M. E., Arashi, M., Saleh, R. A., & Norouzirad, M. (2022). Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning. John Wiley & Sons. [ DOI:10.1002/9781119625438] 24. Shen, S. L., Mei, C. L., & Cui, J. L. (2010). A Fuzzy Varying Coefficient Model and its Estimation. Computers and Mathematics with Applications, 60, 1696-1705. [ DOI:10.1016/j.camwa.2010.06.049] 25. Tanaka, H., Uejima, S., & Asai, K. (1982). Linear Regression Analysis with Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics, 12(6), 903-907. [ DOI:10.1109/TSMC.1982.4308925] 26. Yang, Z., Yin, Y., & Chen, Y. (2013). Robust Fuzzy Varying Coefficient Regression Analysis with Crisp Inputs and Gaussian Fuzzy Output. Journal of Computing Science and Engineering, 7(4), 263-271. [ DOI:10.5626/JCSE.2013.7.4.263] 27. Zeng, W., Feng, Q., & Li, J. (2017). Fuzzy Least Absolute Linear Regression. Applied Soft Computing, 52, 1009-1019. [ DOI:10.1016/j.asoc.2016.09.029]
|