[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Application of Fuzzy Statistics in Experimental Design Models
Mojtaba Kashani , Reza Ghasemi *
Abstract:   (28 Views)

In statistical research, experimental designs are used to investigate the effect of control variables on output responses. These methods are based on the assumption of normal distribution of data and face fundamental challenges in dealing with outliers. The present study examines five different examples of experimental design methods to deal with this challenge: Huber, quadratic, substitution, ranking, and fuzzy regression robustness methods. By providing empirical evidence from real data on seedling growth and weld quality, it is shown that fuzzy can be used as an efficient alternative to conventional methods in the presence of outliers. It is shown that fuzzy not only outperforms the classical experimental design method in the presence of outliers, but also outperforms standard robustness methods in handling outliers.

Keywords: Design of Experiments, Fuzzy Regression, Outlier Data, Evaluation Criteria.
Full-Text [PDF 307 kb]   (21 Downloads)    
Type of Study: Applied | Subject: Fuzzy Statistics
Received: 2025/04/10 | Accepted: 2025/04/30
References
1. آریایی‌فر، س. (1397). تأثیر تیمار هیپوکلریت سدیم بر شاخص‌های طولی گیاهچه. مقاله ارائه‌شده در هفتمین کنفرانس ملی مرتع، 19 اردیبهشت 1397، تهران، ایران. مرتعداری ایران، 18.
2. چاچی، ج.، و حسامیان، غ. (1392). مدل‌بندی داده‌های فازی با رگرسیون اسپلاین تطبیقی چندگانه. نشریه علمی-پژوهشی انجمن آمار ایران، مجله علوم آماری، 8(1)، 1-18.
3. قبادی، ش.، و جوانمرد، م. (1385). طراحی و تحلیل آزمایش‌ها در محیط فازی. مقاله ارائه‌شده در اولین کنفرانس ملی نگهداری و تعمیرات.
4. Akbari, M. G., & Hesamian, G. (2019). Elastic Net Oriented to a Fuzzy Semiparametric Regression Model with Fuzzy Explanatory Variables and Fuzzy Responses. IEEE Transactions on Fuzzy Systems, 27(12), 2433-2442. [DOI:10.1109/TFUZZ.2019.2900603]
5. Aryanifar, S. (2018). The effect of sodium hypochlorite treatment on longitudinal indices of seedling. The 7th National Conference on Rangeland and Rangeland Management of Iran, Tehran, Iran.
6. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons.
7. Bhatti, S. H., Khan, F. W., Irfan, M., & Raza, M. A. (2023). An Effective Approach Towards Efficient Estimation of General Linear Model in Case of Heteroscedastic Errors. Communications in Statistics-Simulation and Computation. [DOI:10.1080/03610918.2020.1856874]
8. Chachi, J., & Hesamian, G. (2014). Modeling fuzzy data with multiple adaptive spline regression. Journal of Statistical Sciences - Iranian Statistical Society Publication, 8(1), 1-18.
9. Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. [DOI:10.1201/9780429246593]
10. Fisher, R. A. (1935). The Design of Experiments. Oliver and Boyd.
11. Farnoosh, R., Ghasemian, J., & Solaymanifard, O. (2012). Integrating Ridge-Type Regularization in Fuzzy Nonlinear Regression. Computational and Applied Mathematics, 31, 323-338. [DOI:10.1590/S1807-03022012000200006]
12. Ghobadi, S., & Javanmard, M. (2006). Design and analysis of experiments in fuzzy environment. First National Conference on Maintenance and Repair.
13. Hesamian, G., & Akbari, M. G. (2020). A Robust Multiple Regression Model Based on Fuzzy Random Variables. Journal of Computational and Applied Mathematics, 371, 112704. [DOI:10.1016/j.cam.2019.112704]
14. Kacprzyk, J., & Fedrizzi, M. (Eds.). (1992). Fuzzy Regression Analysis (2nd ed.). Springer-Verlag.
15. Khammar, A. H., Arefi, M., & Akbari, M. G. (2020). A Robust Least Squares Fuzzy Regression Model Based on Kernel Function. Iranian Journal of Fuzzy Systems, 17(4), 105-119.
16. Kashani, M., Arashi, M., & Rabiei, M. R. (2021). Resampling in Fuzzy Regression via Jackknife-after-Bootstrap (JB). International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 29(4), 517-535. [DOI:10.1142/S0218488521500227]
17. Lambert-Lacroix, S., & Zwald, L. (2011). Robust Regression Through the Huber's Criterion and Adaptive Lasso Penalty. Electronic Journal of Statistics, 5, 1015-1053. [DOI:10.1214/11-EJS635]
18. Lee, W. J., Jung, H. Y., Yoon, J. H., & et al. (2015). The Statistical Inferences of Fuzzy Regression Based on Bootstrap Techniques. Soft Computing, 19, 883-890. [DOI:10.1007/s00500-014-1415-5]
19. Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data (3rd ed.). Wiley. [DOI:10.1002/9781119482260]
20. Melkumova, L., & Shatskikh, S. (2017). Comparing Ridge and Lasso Estimators for Data Analysis. Procedia Engineering, 201, 746-755. [DOI:10.1016/j.proeng.2017.09.615]
21. Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons.
22. Ross, T. J. (2010). Fuzzy Logic with Engineering Applications. John Wiley & Sons. [DOI:10.1002/9781119994374]
23. Saleh, A. K. M. E., Arashi, M., Saleh, R. A., & Norouzirad, M. (2022). Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning. John Wiley & Sons. [DOI:10.1002/9781119625438]
24. Shen, S. L., Mei, C. L., & Cui, J. L. (2010). A Fuzzy Varying Coefficient Model and its Estimation. Computers and Mathematics with Applications, 60, 1696-1705. [DOI:10.1016/j.camwa.2010.06.049]
25. Tanaka, H., Uejima, S., & Asai, K. (1982). Linear Regression Analysis with Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics, 12(6), 903-907. [DOI:10.1109/TSMC.1982.4308925]
26. Yang, Z., Yin, Y., & Chen, Y. (2013). Robust Fuzzy Varying Coefficient Regression Analysis with Crisp Inputs and Gaussian Fuzzy Output. Journal of Computing Science and Engineering, 7(4), 263-271. [DOI:10.5626/JCSE.2013.7.4.263]
27. Zeng, W., Feng, Q., & Li, J. (2017). Fuzzy Least Absolute Linear Regression. Applied Soft Computing, 52, 1009-1019. [DOI:10.1016/j.asoc.2016.09.029]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4714