|
1. شیراوژن، م.، محمدپور، م. (1399)، مدل خودبازگشتی صحیح مقدار مرتبه اول براساس عملگر نازک دوجملهای منفی با نوفههای وابسته، مجله علوم آماری، 1، 215-232. 2. Al-Osh, M. A. and Alzaid, A. A. (1987), First-Order Integer-Valued Autoregressive (INAR(1)) Process. Journal of Time Series Analysis, 8, 261-275. [ DOI:10.1111/j.1467-9892.1987.tb00438.x] 3. Baragona, R., Battaglia, F. and Cucina D. (2013), Empirical Likelihood for Break Detection in Time Series. Electron Journal of Statistics, 7, 3089-3123. [ DOI:10.1214/13-EJS873] 4. Ding, X. and Wang, D. (2016), Empirical Likelihood Inference for INAR(1) Model with Explanatory Variables. Journal of Korean Statistical Society, 45, 623-632. [ DOI:10.1016/j.jkss.2016.05.004] 5. Gamage, R. D. P. and Ning, W. (2021) Empirical Likelihood for Change Point Detection in Autoregressive Models. Journal of Korean Statistical Society. 50, 69-97. [ DOI:10.1007/s42952-020-00061-w] 6. Kang, J., Lee, S. (2009), Parameter Change Test for Random Coefficient Integer-Valued Autoregressive Processes with Application to Polio Data Analysis. Journal of Time Series Analysis, 30, 239-258. [ DOI:10.1111/j.1467-9892.2009.00608.x] 7. Owen A. B. (1990), Empirical Likelihood Ratio Confidence Regions. Annals of Statistics, 18, 90-120. [ DOI:10.1214/aos/1176347494] 8. Piyadi Gamage, R. D., and Ning, W. (2021), Empirical Likelihood for Change Point Detection in Autoregressive Models. Journal of the Korean Statistical Society, 50(1), 69-97. [ DOI:10.1007/s42952-020-00061-w] 9. Qin, J. and Lawless, J. (1994), Empirical Likelihood and General Estimating Equations. The Annals of Statistics, 22, 300-325. [ DOI:10.1214/aos/1176325370] 10. Ristić, M. M., Bakouch, H. S. and Nastić, A. S. (2009), A New Geometric First Order Integer-Valued Autoregressive (NGINAR(1)) Process. Journal of Statistical Planning and Inference, 139, 2218-2226. [ DOI:10.1016/j.jspi.2008.10.007] 11. Shirozhan, M., Mohammadpour, M. (2019), An INAR(1) Model Based on Negative Binomial Thinning Operator with Serially Dependent Noise. Journal of Statistical Sciences, 1, 215-232. [ DOI:10.29252/jss.14.1.217] 12. Steutel, F. and van Harn, K. (1979), Discrete Analogues of Self Decomposability and Stability. The Annals of Probability, 7, 893-899. [ DOI:10.1214/aop/1176994950] 13. White, H. (2001), Asymptotic Theory for Econometricians. London: Academic Press. 14. Weiß, C. H. (2008), Thinning Operations for Modeling Time Series of Counts: a Survey. ASTA Advances in Statistical Analysis, 92, 319-343. [ DOI:10.1007/s10182-008-0072-3] 15. Weiß, C. H. and Kim, H. Y. (2014), Diagnosing and Modelling Extra-Binomial Variation for Time-Dependent Counts. Applied Stochastic Models in Business and Industry, 30, 588-608. [ DOI:10.1002/asmb.2005] 16. Yu, K., Wang, H. and Weiß, C. H. (2023), An Empirical-Likelihood Based Structural-Change Test for INAR Processes, Journal of Statistical Computation and Simulation, 93, 442-458. [ DOI:10.1080/00949655.2022.2109635] 17. Yu, M., Wang, D. and Yang, K. (2019), A Class of Observation-Driven Random Coefficient INAR (1) Processes Based on Negative Binomial Thinning. Journal of the Korean Statistical Society, 48, 248-264. [ DOI:10.1016/j.jkss.2018.11.004] 18. Zhang, H., Wang, D., and Zhu, F. (2011), Empirical Likelihood Inference for Random Coefficient INAR(p) Process. Journal of Time Series Analysis. 32, 195-203. [ DOI:10.1111/j.1467-9892.2010.00691.x] 19. Zhang, H., Wang, D. and Zhu, F. (2012), Generalized RCINAR(1) Process with Signed Thinning Operator. Communications in Statistics: Theory and Methods, 41, 1750- 1770. [ DOI:10.1080/03610926.2010.551452] 20. Zhu, F., Liu, M., Ling, S. and Cai, Z. (2022), Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model. Journal of Business and Economic Statistics, 41, 228-240. [ DOI:10.1080/07350015.2021.2008406]
|