In this paper, a novel index entitled the Jensen cumulative residual extropy divergence is investigated for the analysis and measurement of the behavioral complexity of conditional mixed systems. First, using the vector of conditional coefficients obtained from the signature vector, the behavior of this measure is analytically examined for a class of coherent systems as well as their dual systems, in the case where the components follow gamma distributions. Then, simulations are performed to evaluate the obtained results. The results of this paper show that the minimum complexity is achieved by coherent $k$-out-of-$n$ systems with the Jensen cumulative residual extropy divergence equal to zero. Moreover, the results indicate that duality of systems does not necessarily lead to equality of the Jensen cumulative residual extropy divergence in conditional mixed systems; rather, this index is sensitive to component weighting, order statistics, and the structural interaction among the components of the system.
Type of Study: Research |
Subject: Reliability Received: 2025/08/31 | Accepted: 2026/09/1
References
1. اﮐﺒﺮی، م.، ﮐﺜﯿﺮی، ع. و اﺣﻤﺪی، ک. (۱۴۰۲)، ﮐﺎرﺑﺮد اﮐﺴﺘﺮوﭘﯽ در ﻣﺸﺨﺺ ﺳﺎزی ﺑﺮﺧﯽ از ﺗﻮزﯾﻊ ﻫﺎی پیوسته، مجله علوم آماری ، 17، 19-1.
2. نظامپور، ف.، علیزاده نوقابی، ه. و چهکندی، م. (1404)، ازمون نیکویی برازش برای مدل تعمیر کاهش حسابی سن براساس اندازههای اطلاع، مجله علوم آماری، 19، 489-467.
3. Akbari, M., Kasiri, A., and Ahmadi, K. (2023). Application of Extropy in Characterization of Some Continuous Distributions. Journal of Statistical Sciences, 17(1), 1-19.. [DOI:10.61186/jss.17.1.12]
4. Alizadeh Noughabi, H., and Alizadeh Noughabi, R. (2025). On the Estimation of Relative Extropy and Its Application in Goodness-of-Fit Tests. Sankhya B, 87(2), 650-685. [DOI:10.1007/s13571-025-00388-6]
5. Asadi, M. (2006). On the Mean Past Lifetime of the Components of a Parallel System. Journal of Statistical Planning and Inference, 136(4), 1197-1206. [DOI:10.1016/j.jspi.2004.08.021]
6. Asadi, M., Ebrahimi, N., Soofi, E. S., and Zohrevand, Y. (2016). Jensen-Shannon Information of the Coherent System Lifetime. Reliability Engineering and System Safety, 156, 244-255. [DOI:10.1016/j.ress.2016.07.015]
7. Barlow, R. E. and Proschan, F., (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.
8. Chakraborty, S., and Pradhan, B. (2024). On Cumulative Residual Extropy of Coherent and Mixed Systems. Annals of Operations Research, 340(1), 59-81. [DOI:10.1007/s10479-023-05727-2]
9. Dewan, I., and Khaledi, B. E. (2014). On Stochastic Comparisons of Residual Lifetime at Random Time. Statistics and Probability Letters, 88, 73-79. [DOI:10.1016/j.spl.2014.01.029]
10. Eryilmaz, S. (2010). Review of Recent Advances in Reliability of Consecutive K-Out-of-N and Related Systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 224(3), 225-237. [DOI:10.1243/1748006XJRR332]
11. Eryılmaz, S. (2013). On Residual Lifetime of Coherent Systems After the rth Failure. Statistical Papers, 54(1), 243-250. [DOI:10.1007/s00362-011-0422-1]
12. Giri, R. R., Kayal, S., and Contreras-Reyes, J. E. (2025). Permutation Extropy: A New Time Series Complexity Measure. Physica A: Statistical Mechanics and Its Applications, 130951. [DOI:10.1016/j.physa.2025.130951]
13. Goliforushani, S., and Asadi, M. (2011). Stochastic Ordering Among Inactivity Times of Coherent Systems. Sankhya B, 73(2), 241-262. [DOI:10.1007/s13571-011-0028-6]
14. Goliforushani, S., Asadi, M., and Balakrishnan, N. (2012). On the Residual and Inactivity Times of the Components of Used Coherent Systems. Journal of Applied Probability, 49(2), 385-404. [DOI:10.1239/jap/1339878793]
15. Jahanshahi, S. M. A., Zarei, H., and Khammar, A. H. (2020). On Cumulative Residual Extropy. Probability in the Engineering and Informational Sciences, 34(4), 605-625. [DOI:10.1017/S0269964819000196]
16. Jose, J., and Sathar, E. A. (2019). Residual Extropy of K-Record Values. Statistics and Probability Letters, 146, 1-6. [DOI:10.1016/j.spl.2018.10.019]
17. Kayal, S. (2019). On a Generalized Entropy of Mixed Systems. Journal of Statistics and Management Systems, 22(6), 1183-1198. [DOI:10.1080/09720510.2019.1580899]
18. Kayal, S. (2021). Failure Extropy, Dynamic Failure Extropy and Their Weighted Versions. Stochastics and Quality Control, 36(1), 59-71. [DOI:10.1515/eqc-2021-0008]
19. Khaledi, B. E., and Shaked, M. (2007). Ordering Conditional Lifetimes of Coherent Systems. Journal of Statistical Planning and Inference, 137, 1173-1184. [DOI:10.1016/j.jspi.2006.01.012]
20. Kochar, S., Mukerjee, H., and Samaniego, F. J. (1999). The "Signature" of a Coherent System and Its Application to Comparison Among Systems. Naval Research Logistics, 46, 507-523.
https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D [DOI:10.1002/(SICI)1520-6750(199908)46:53.0.CO;2-D]
21. Lad, F., Sanfilippo, G., and Agro, G. (2015). Extropy: Complementary Dual of Entropy. Statistical Science, 30, 40-58. [DOI:10.1214/14-STS430]
22. Li, X., and Zhang, Z. (2008). Some Stochastic Comparisons of Conditional Coherent Systems. Applied Stochastic Models in Business and Industry, 24, 541-549. [DOI:10.1002/asmb.715]
23. Navarro, J., Balakrishnan, N., and Samaniego, F. J. (2008). Mixture Representations of Residual Lifetimes of Used Systems. Journal of Applied Probability, 45, 1097-1112. [DOI:10.1239/jap/1231340236]
24. Nezampour, F., Alizadeh Noughabi, H., and Chahkandi, M. (2025). Goodness-of-fit Test For the Arithmetic Reduction of Age Model Based on Information Measures. Journal of Statistical Sciences, 19(2), 467-489. [DOI:10.61882/jss.19.2.11]
25. Pakdaman, Z., and Alizadeh Noughabi, R. (2025a). A New Representation of Some Extropy-Related Measures Based on Probability Density Quantile. International Journal of Reliability, Quality and Safety Engineering, 32(5), 2550013. [DOI:10.1142/S0218539325500135]
26. Pakdaman, Z., and Alizadeh Noughabi, R. (2025). Analyzing the Cumulative Residual Extropy of System Inactivity Times and Revealing System Complexity. Journal of Inequalities and Applications, 2025(1), 117. [DOI:10.1186/s13660-025-03369-5]
27. Pakdaman, Z., and Noughabi, R. A. (2025b). On the Study of the Cumulative Residual Extropy of Mixed Used Systems and Their Complexity. Probability in the Engineering and Informational Sciences, 39(1), 122-140. [DOI:10.1017/S0269964824000196]
28. Pandey, A., and Kundu, C. (2025). Bivariate Extension of Residual Extropy With Application. Statistics, 1-30. [DOI:10.1080/02331888.2025.2586792]
29. Parvardeh, A., and Balakrishnan, N. (2014). On the Conditional Residual Life and Inactivity Time of Coherent Systems. Journal of Applied Probability, 51(4), 990-998. [DOI:10.1239/jap/1421763323]
30. Qiu, G. (2017). The Extropy of Order Statistics and Record Values. Statistics and Probability Letters, 120, 52-60. [DOI:10.1016/j.spl.2016.09.016]
31. Rajesh, G., and Sajily, V. S. (2025). Testing Exponentiality Based on Relative Extropy. Statistical Papers, 66(5), 108. [DOI:10.1007/s00362-025-01726-6]
32. Samaniego, F. J. (2007). System Signatures and Their Applications in Engineering Reliability. Springer, New York. [DOI:10.1007/978-0-387-71797-5]
33. Sathar, E. A., and Nair, R. D. (2025). Properties of Extropy and Its Weighted Version for Doubly Truncated Random Variables. Ricerche di Matematica, 74(2), 977-1002. [DOI:10.1007/s11587-024-00863-8]
34. Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423.
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x [DOI:10.1002/j.1538-7305.1948.tb01338.x]
35. Zhang, Z. (2010). Mixture Representations of Inactivity Times of Conditional Coherent Systems and Their Applications. Journal of Applied Probability, 47, 876-885. [DOI:10.1239/jap/1285335415]