[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Comparative Analysis of Parameter Estimation Methods for Periodic Autoregressive Models with Scale Mixture of Skew Normal Distributions in the Face of Outliers and Heavy Tailed Data
Tahere Manouchehri * , Ali Reza Nematollahi
Abstract:   (17 Views)

In this paper, we present a comprehensive review and comparative analysis of estimation methods for periodic autoregressive (PAR) models driven by scale mixture of skew-normal (SMSN) innovations, a flexible class suitable for modeling both symmetric and asymmetric data. Expectation-conditional maximization algorithms are employed to develop maximum likelihood, maximum a posteriori, and Bayesian estimation procedures. A thorough evaluation of these methods is conducted using simulation studies, with particular attention to asymptotic properties and robustness against outliers, high peaks, and heavy tails. To demonstrate their practical utility, these methods are applied to monthly Google stock price data.

Keywords: Periodic autoregressive models, Scale mixture of skew normal, ML estimate, ECM algorithms, MAP estimate, Bayesian analysis, MCMC algorithms, Heavy tails, Outliers.
Full-Text [PDF 8832 kb]   (12 Downloads)    
Type of Study: Research | Subject: Time Series
Received: 2025/09/24 | Accepted: 2026/09/1
References
1. Arellano-Valle R. B., Castro L. M., Genton M. G., & Gómez H. W. (2008). Bayesian Inference for Shape Mixtures of Skewed Distributions, With Application to Regression Analysis. Bayesian Analysis, 3(3), 513-539. [DOI:10.1214/08-BA320]
2. Basawa, I. V., & Lund, R. B. (2001). Large Sample Properties of Parameter Estimates for Periodic ARMA Models. Journal of Time Series Analysis, 22, 651-663. [DOI:10.1111/1467-9892.00246]
3. Basso, R. M., Lachos, V. H., Cabral, C. R. B., & Ghosh, P. (2010). Robust Mixture Modeling Based on the Scale Mixtures of Skew-Normal Distributions. Computational Statistics and Data Analysis, 54, 2926-2941. [DOI:10.1016/j.csda.2009.09.031]
4. Broszkiewicz‐Suwaj, E., Makagon, A., Weron, R., & Wylomanska, A. (2004). On Detecting and Modeling Periodic Correlation in Financial Data. Physica A: Statistical Mechanics and Its Applications, 336(1-2), 196-205. [DOI:10.1016/j.physa.2004.01.025]
5. Chaari, F., Leskow, J., Napolitano, A., Zimroz, R., & Wylomanska, A. (2017). Cyclostationarity: Theory and Methods III, Applied Condition Monitoring. Springer. [DOI:10.1007/978-3-319-51445-1]
6. Ferreira, C. S., & Dias, R. (2024). Semiparametric Regression Models Under Skew Scale Mixtures of Normal Distributions. Communications in Statistics: Simulation and Computation, 1-23. [DOI:10.1080/03610918.2024.2372667]
7. Franses, P. H., & Paap, R. (1994). Model Selection in Periodic Autoregressive. Oxford Bulletin of Economics and Statistics, 56(4), 421-439. [DOI:10.1111/j.1468-0084.1994.tb00018.x]
8. Giri, P., Grzesiek, A., Żuławiński, W., & Sundar, S. (2022). The Modified Yule-Walker Method for Multidimensional Infinite-Variance Periodic Autoregressive Model of Order 1. Journal of the Korean Statistical Society, 51(4), 1130-1142. [DOI:10.1007/s42952-022-00191-3]
9. Gladyshev, E. G. (1961). Periodically Correlated Random Sequences. Soviet Mathematics, 2, 385-388.
10. Hashemi, F., & Goodarzi, F. (2024). Linear Mixed Model Based on Mean Mixture of Multivariate Normal Distributions: A Flexible Estimate Based on Missing Value. Journal of Statistical Modelling: Theory and Applications, 5(2), 97-119.
11. Hipel, K. W., & McLeod, A. I. (1994). Time Series Modelling of Water Resources and Environmental Systems. Elsevier.
12. Hurd, H. L., & Miamee, A. (2007). Periodically Correlated Random Sequences: Spectral Theory and Practice. John Wiley & Sons. [DOI:10.1002/9780470182833]
13. Kermarrec, G., Maddanu, F., Klos, A., Proietti, T., & Bogusz, J. (2024). Modeling Trends and Periodic Components in Geodetic Time Series: A Unified Approach. Journal of Geodesy, 98, Article 3. [DOI:10.1007/s00190-024-01826-5]
14. Lachos V. H., Ghosh P., & Arellano-Valle R. B. (2010). Likelihood Based Inference for Skew Normal/Independent Linear Mixed Models. Statistica Sinica, 20, 303-322.
15. Liu, C., & Rubin, D. B. (1994). The ECME Algorithm: A Simple Extension of EM and ECM With Faster Monotone Convergence. Biometrika, 81, 633-648. [DOI:10.1093/biomet/81.4.633]
16. Lund, R. B., & Basawa, I. V. (2000). Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models. Journal of Time Series Analysis, 21, 75-93. [DOI:10.1111/1467-9892.00174]
17. Maleki, M., & Arellano-Valle, R. B. (2016). Maximum A-Posteriori Estimation of Autoregressive Processes Based on Finite Mixtures of Scale-Mixtures of Skew-Normal Distributions. Journal of Statistical Computation and Simulation, 87(6), 1061-1083. [DOI:10.1080/00949655.2016.1245305]
18. Maleki, M., Arellano-Valle, R. B., Dey, D. K., Mahmoudi, M. R., & Jalili, S. M. J. (2018). A Bayesian Approach to Robust Skewed Autoregressive Processes. Calcutta Statistical Association Bulletin, 69(2), 165-182. [DOI:10.1177/0008068317732196]
19. Maleki, M., Wraith, D., Mahmoudi, M. R., & Contreras-Reyes, J. E. (2020). Asymmetric Heavy-Tailed Vector Auto-Regressive Processes With Application to Financial Data. Journal of Statistical Computation and Simulation, 90(2), 324-340. [DOI:10.1080/00949655.2019.1680675]
20. Mahmoudi, M. R., Maleki, M., Baleanu, D., Nguyen, V.-T., & Pho, K.-H. (2020). A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models. Symmetry, 12(6), Article 929. [DOI:10.3390/sym12060929]
21. Manouchehri, T., & Nematollahi, A. R. (2019a). On the Estimation Problem of Periodic Autoregressive Time Series: Symmetric and Asymmetric Innovations. Journal of Statistical Computation and Simulation, 89(1), 71-97. [DOI:10.1080/00949655.2018.1535599]
22. Manouchehri, T., & Nematollahi, A. R. (2019b). Periodic Autoregressive Models With Closed Skew-Normal Innovations. Computational Statistics, 34(3), 1183-1213. [DOI:10.1007/s00180-019-00893-z]
23. Manouchehri, T., & Nematollahi, A. R. (2022). A Comparison of the Bayesian and Non-Bayesian Approaches for the Periodic AR Models Based on the SMSN Innovations. Iranian Journal of Science and Technology: Transactions A, 46(2), 615-630. [DOI:10.1007/s40995-022-01266-w]
24. Meng, X. L., & Rubin, D. B. (1993). Maximum Likelihood Estimation Via the ECM Algorithm: A General Framework. Biometrika, 80, 267-278. [DOI:10.1093/biomet/80.2.267]
25. Nematollahi, A. R., Soltani, A. R., & Mahmoudi, M. R. (2017). Periodically Correlated Modeling by Means of the Periodograms Asymptotic Distributions. Statistical Papers, 1(1), 1-12. [DOI:10.1007/s00362-016-0748-9]
26. Pagano, M. (1978). On Periodic and Multiple Autoregressions. The Annals of Statistics, 6, 1310-1317. [DOI:10.1214/aos/1176344376]
27. Shao, Q. (2006). Mixture Periodic Autoregressive Time Series Models. Statistics & Probability Letters, 76(6), 609-618. [DOI:10.1016/j.spl.2005.09.015]
28. Shao, Q. (2007). Robust Estimation for Periodic Autoregressive Time Series. Journal of Time Series Analysis, 29, 251-263. [DOI:10.1111/j.1467-9892.2007.00555.x]
29. Thomas, H. A., & Fiering, M. B. (1962). Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation. Design of Water Resource Systems, 459-493. [DOI:10.4159/harvard.9780674421042.c15]
30. Troutman, B. M. (1979). Some Results in Periodic Autoregression. Biometrika, 66, 219-228. [DOI:10.1093/biomet/66.2.219]
31. Ursu, E., & Turkman, K. F. (2012). Periodic Autoregressive Model Identification Using Genetic Algorithm. Journal of Time Series Analysis, 33, 398-405. [DOI:10.1111/j.1467-9892.2011.00772.x]
32. Vecchia, A. V. (1985a). Periodic Autoregressive-Moving Average (PARMA) Modeling With Applications to Water Resources. Water Resources Bulletin, 21, 721-730. [DOI:10.1111/j.1752-1688.1985.tb00167.x]
33. Vecchia, A. V. (1985b). Maximum Likelihood Estimation for Periodic Autoregressive Moving Average Models. Technometrics, 27, 375-384. [DOI:10.1080/00401706.1985.10488076]
34. Yaghoubi, S., & Farnoosh, R. (2025). Static Finite Mixture Model of Multivariate Skew-Normal Distributions to Cluster Multivariate Time Series Based on Generalized Autoregressive Score Approach. International Journal of Nonlinear Analysis and Applications, 16(4), 27-39.
35. Zeller, C. B., Cabral, C. R. B., & Lachos, V. H. (2016). Robust Mixture Regression Modeling Based on Scale Mixtures of Skew-Normal Distributions. TEST, 25(2), 375-396. [DOI:10.1007/s11749-015-0460-4]
36. Żuławiński, W., & Wyłomańska, A. (2023). Estimation of Coefficients for Periodic Autoregressive Model With Additive Noise-A Finite-Variance Case. arXiv Preprint, arXiv:2302.07070. [DOI:10.1016/j.cam.2023.115131]
37. Żuławiński, W., Antoni, J., Zimroz, R., & Wyłomańska, A. (2024). Robust Coherent and Incoherent Statistics for Detection of Hidden Periodicity in Models With Non-Gaussian Additive Noise. EURASIP Journal on Advances in Signal Processing, 2024(1). [DOI:10.1186/s13634-024-01168-6]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.14 seconds with 45 queries by YEKTAWEB 4722