1. Amini, M. and Roozbeh, M. (2015), Optimal Partial Ridge Estimation in Restricted Semiparametric Regression Models, Journal of Multivariate Analysis, 136, 26-40. [ DOI:10.1016/j.jmva.2015.01.005] 2. Ara{'ujo R. D. A., Oliveira A. L. and Meira S. (2015), A Hybrid Model for High-Frequency Stock Market Forecasting, Expert Systems with Applications, 42 , 4081-4096. [ DOI:10.1016/j.eswa.2015.01.004] 3. Efron, B., and Hastie,T. (2017), Computer Age Statistical Inference, Cambridge University Press, Cambridge. 4. Ferraty, F., Vieu, P. (2006), Nonparametric Functional Data Analysis: Theory and Practice. Springer Science and Business Media, New York, 5. Jolliffe I.T. (2002), Principal Component Analysis, Springer Series in Statistics, Aberdeen. 6. Hoerl A.E. and Kennard R.W. (1975), Ridge Regression some Simulation, Communication in Statistics, 4 , 4105-4123. [ DOI:10.1080/03610917508548342] 7. Goldsmith, J., Scheipl, F. (2014), Estimator Selection and Combination in Scalar-on-Function Regression, Computational Statistics & Data Analysis, 70, 362-372. [ DOI:10.1016/j.csda.2013.10.009] 8. Kao L. J., Chiu C. C., Lu C. J. and Yang J. L. (2013), Integration of Nonlinear Independent Component Analysis and Support Vector Regression for Stock Price Forecasting, Neurocomputing, 99, 534-542. [ DOI:10.1016/j.neucom.2012.06.037] 9. McDonald G. C., and Galarneau D. I. (1975), A Monte Carlo Evaluation of some Ridge-Type Estimators. Journal of the American Statistical Association, 70(350), 407-416. [ DOI:10.1080/01621459.1975.10479882] 10. Miao, R., Zhang, X., and Wong, R. K. (2022), A Wavelet-Based Independence Test for Functional Data with an Application to MEG Functional Connectivity. Journal of the American Statistical Association, 1-14. 11. Nayak R. K., Mishra D. and Rath A. K. (2015), A Naive Svm-Knn Based Stock Market Trend Rreversal Analysis for Indian Benchmark Indices, Applied Soft Computing, 35, 670-680. [ DOI:10.1016/j.asoc.2015.06.040] 12. Patel J., Shah S., Thakkar P. and Kotecha K. (2015), Predicting Stock Market Index Using Fusion of Machine Learning Techniques, Expert Systems with Applications, 42, 2162-2172. [ DOI:10.1016/j.eswa.2014.10.031] 13. Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis, Springer-Verlag, New York. 14. Roozbeh, M. (2018), Optimal QR-Based Estimation in Partially Linear Regression Models with Correlated Errors Using GCV Criterion, Computational Statistics & Data Analysis, 117, 45-61. [ DOI:10.1016/j.csda.2017.08.002] 15. Roozbeh, M. and Amini M. (2020), Feasible Generalized Ridge Robust Estimator in Semiparametric Regression Models, Journal of Statistical Sciences, 13(2), 441-460. [ DOI:10.29252/jss.13.2.441] 16. Roozbeh, M. and Maanavi, M. (2021), Modeling of Chronological Age Using Least Trimmed Squares Ridge Regression, Journal of Statistical Sciences, 14(2), 409-428. [ DOI:10.29252/jss.14.2.6] 17. Roozbeh, M., Rouhi, A., Jahadi, F., and Zalzadeh, S. (2022), Support Vector Machines Regression Model and Comparison with Semi-parametric Regression. Andishe _ye Amari, 26(2), 21-32. 18. Sheather, S. (2009), A Modern Approach to Regression with R, Springer Science and Business Media. 19. Tibshirani R. (1996), Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267-288. [ DOI:10.1111/j.2517-6161.1996.tb02080.x] 20. Vapnik V. N. (1995), The Nature of Statistical Learning Theory, New York. [ DOI:10.1007/978-1-4757-2440-0] [ PMID] 21. Xiao Y., Xiao J., Lu F. and Wang S. (2014), Ensemble Anns-Pso-Ga Approach for Day-Ahead Stock E-Exchange Prices Forecasting, International Journal of Computational Intelligence Systems, 7, 272-290. [ DOI:10.1080/18756891.2013.864472] 22. Zhang, X., Xue, W., and Wang, Q. (2021), Covariate Balancing Functional Propensity Score for Functional Treatments in Cross-Sectional Observational Studies. Computational Statistics & Data Analysis, 163, 107303. [ DOI:10.1016/j.csda.2021.107303]
|