1. Arora, J. S. (2017). Introduction to Optimum Design. 4th Edition. Elsevier Science. 2. Borror, C. M., Montgomery, D. C., and Myers, R. H. (2002). Evaluation of statistical designs for ex-periments involving noise variables. Journal of Quality Technology. Vol. 34, pp. 54-70. [ DOI:10.1080/00224065.2002.11980129] 3. Box, G. E. P. (1988). Signal-to-Noise Ratio, Performance Criteria, and Transformation. Technomet-rics, Vol. 30, pp. 1-17. [ DOI:10.1080/00401706.1988.10488313] 4. Box, G. E. P., and Jones, S. (1990). Designing Products That Are Robust To The Environment. Re-port Series in Quality and Productivity. CPQI, University of Wisconsin, Number 56. 5. Box, G. E. P., and Wilson, K. B. (1951). On the Experimental Attainment of Optimum Conditions (with discussion). Journal of the Royal Statistical Society, Series B, Vol. 13, pp. 1-45. [ DOI:10.1111/j.2517-6161.1951.tb00067.x] 6. Boylan, G. L., Goethals, P. L., and Cho, B. R. (2013). Robust Parameter Design in Resource-Constrained Environments: an Investigation of Trade-offs Between Vosts and Precision Within Variable Processes. Applied Mathematical Modelling. Vol. 37, pp. 2394-2416. [ DOI:10.1016/j.apm.2012.05.017] 7. Chan, L. K., and Xiao, P. H. (1995). Combined Robust Design. Quality Engineering, Vol. 8, pp. 47-56. [ DOI:10.1080/08982119508904604] 8. Copeland, K. A. F., and Nelson, P. R. (1996). Dual Response Optimization via Direct Function Min-imization. Journal of Quality Technology, Vol. 28, pp. 331-336. [ DOI:10.1080/00224065.1996.11979683] 9. Del Castillo E., and Montgomery, D. C. (1993). A nonlinear programming solution to the dual re-sponse problem. Journal of Quality Technology, Vol. 25, pp. 199-204. [ DOI:10.1080/00224065.1993.11979454] 10. Kiani, M. (2010). Extensions to Modified Gram-Schmidt Strategy and Its Application in Steepest Ascent Method. Journal of Statistical Computation and Simulation, Vol. 80, pp. 389-400. [ DOI:10.1080/00949650802662813] 11. Kiani, M. (2012). On the Construction of Optimal Designs. Journal of Statistical Computation and Simulation, Vol. 82, pp. 1003-1014. [ DOI:10.1080/00949655.2011.563739] 12. Lee, Y., and Nelder, J. A. (1998). Joint Modeling of Mean and Dispersion. Technometrics, Vol. 40, pp. 168-175. [ DOI:10.2307/1270676] 13. Lee, Y., and Nelder, J. A. (2003). Robust Design via Generalized Linear Models. Journal of Quality Technology, Vol. 35, pp. 2-12. [ DOI:10.1080/00224065.2003.11980187] 14. Li, W., and Wu, C. F. J. (1999). An Integrated Method of Parameter Design and Tolerance Design. Quality Engineering, Vol. 11, pp. 417-425. [ DOI:10.1080/08982119908919258] 15. Lin, D. K. J. and Tu, W. (1995). Dual Response Surface Optimization. Journal of Quality Technolo-gy, Vol. 27, pp. 248-260. [ DOI:10.1080/00224065.1995.11979556] 16. MacKay, R. J., and Steiner, S. H. (1997). Strategies for Variability Reduction. Quality Engineering, Vol. 10, pp. 125 -136. [ DOI:10.1080/08982119708919115] 17. Miro-Quesada, G., and Del Castillo, E. (2004). Two Approaches for Improving the Dual Response Method in Robust Parameter Design. Journal of Quality Technology, Vol. 36, pp. 154-168. [ DOI:10.1080/00224065.2004.11980262] 18. Montgomery, D. C. (2020). Design and Analysis of Experiments. 10th Edition, John Wiley & Sons, New York. 19. Myers R. H., Montgomery, D. C., and Anderson, C. M. (2016). Response Surface Methodology: Pro-cess and Product Optimization Using Designed Experiments. 4th Edition, John Wiley and Sons, New York, NY. 20. Myers R. H., Khuri A. I., and Vining G. G. (1992). Response Surface Alternatives to the Taguchi Robust Parameter Design Approach. The American Statistician, Vol. 46 pp. 131-139. [ DOI:10.1080/00031305.1992.10475869] 21. Myers, R. H., Khuri, A. I., and Carter, W. H. (1989). Response Surface Methodology: 1966-1988. Technometrics, Vol. 31, pp. 137-157.
https://doi.org/10.2307/1268813 [ DOI:10.1080/00401706.1989.10488509] 22. Myers, W. R., Brenneman, W. A., and Myers, R. H. (2005). A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model. Journal of Quality Technology, Vol. 37, pp. 130-138. [ DOI:10.1080/00224065.2005.11980311] 23. Nelder, J. A., and Lee, Y. (1991). Generalized Linear Models for the Analysis of Taguchi-Type Ex-periments. Applied Stochastic models and Data Analysis, Vol. 7, pp. 107-120. [ DOI:10.1002/asm.3150070110] 24. Rodriguez, M., Montgomery, D. C., and Borror, C. M. (2009). Generating Experimental Designs In-volving Control and Noise Variables Using Genetic Algorithms. Quality and Reliability Engi-neering International, Vol. 25, pp. 1045-1065. [ DOI:10.1002/qre.1020] 25. Searle, S.R., Casella, G. and McCulloch, C.E. (2006). Variance Components. John Wiley & Sons, New York, NY. 26. Shin, S., Samanlioglu, F., Cho, B. R., Wiecek, M. M. (2011). Computing Trade-offs in Robust De-sign: Perspectives of the Mean Squared Error. Computers and Industrial Engineering, Vol. 60, pp. 248-255. [ DOI:10.1016/j.cie.2010.11.006] 27. Shoemaker, A. C., Tsui, K. L., and Wu, C. F. J. (1991). Economical Experimentation Methods for Robust Design. Technometrics, Vol. 33, pp. 415-427. [ DOI:10.1080/00401706.1991.10484870] 28. Taguchi, G. (1986). Introduction to Quality Engineering. Tokyo, Japan: Asian Productivity Organiza-tion. 29. Taguchi, G. (1987). System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost. Quality Resources, White Plains, NJ. 30. Vining, G. C., and Myers, R. H. (1990). Combining Taguchi and response surface philosophies: a dual response approach. Journal of Quality Technology, Vol. 22, pp. 38-45. [ DOI:10.1080/00224065.1990.11979204] 31. Welch, W. J., Yu, T. K., Kang, S. M., and Sacks, J. (1990). Computer Experiments for Quality Con-trol by Parameter Design. Journal of Quality Technology, Vol. 22, pp. 15-22. [ DOI:10.1080/00224065.1990.11979201] 32. Wu, C. F. J., and Hamada, M. (2021). Experiments: Planning, Analysis, and Parameter Design Opti-mization. 3rd Edition. John Wiley & Sons, New York. [ DOI:10.1002/9781119470007] 33. Wu, C. F. J., and Zhu, Y. (2003). Optimal Selection of Single Arrays for Parameter Design Experi-ments. Statistica Sinica, Vol. 13, pp. 1179-1199.
|