[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 2 (2-2025) ::
JSS 2025, 18(2): 0-0 Back to browse issues page
Fuzzy Lee-Carter Model in Mortality Data Analysis
Jalal Chachi * , MohammadReza Akhond , Shokoufeh Ahmadi
Abstract:   (426 Views)
The Lee-Carter model is a useful dynamic stochastic model representing the evolution of central mortality rates over time. This model only considers the uncertainty about the coefficient related to the mortality trend over time but not the age-dependent coefficients. This paper proposes a fuzzy extension of the Lee-Carter model that allows quantifying the uncertainty of both kinds of parameters. The variability of the time-dependent index is modeled as a stochastic fuzzy time series. Likewise, the uncertainty of the age-dependent coefficients is quantified using triangular fuzzy numbers. Considering this last hypothesis requires developing and solving a fuzzy regression model. Once the generalization of the desired fuzzy model is introduced, we will show how to fit the logarithm of the central mortality rate in Khuzestan province using by using fuzzy numbers arithmetic during the years 1401-1383 and random fuzzy forecast in the years 1402-1406.
Keywords: Fuzzy Lee-Carter model, Fuzzy stochastic forecasting, Fuzzy mortality data, Uncertainty.
Full-Text [PDF 295 kb]   (262 Downloads)    
Type of Study: Research | Subject: Fuzzy Statistics
Received: 2024/07/27 | Accepted: 2024/05/30 | Published: 2024/12/2
References
1. ﭼﺎﭼﯽ ج. و ﭼﺎﺟﯽ ع. (1400)، ﮐﺎرﺑﺮد ﻋﻤﻠﮕﺮﻫﺎی وزﻧﯽ در ﻣﺪل رﮔﺮﺳﯿﻮن ﻗﺪرﻣﻄﻠﻖ اﻧﺤﺮاﻓﺎت ﻣﺮﺗﺐ ﺷﺪه، ﻣﺠﻠﻪ ﻋﻠﻮم آﻣﺎری، 15(1)، 60-39.
2. ﻣﺤﻤﺪی ح.، اﮐﺒﺮی م. ق. و ﺣﺴﺎﻣﯿﺎن غ. (1403)، ﻣﺪل ﺳﺎزی اﺗﻮرﮔﺮﺳﯿﻮ ﺑﺮاﺳﺎس ﺗﺎﺑﻊ ﺗﮑﯿﻪ ﮔﺎه ﻣﺘﻐﯿﺮﻫﺎی ﺗﺼﺎدﻓﯽ ﻓﺎزی، ﻣﺠﻠﻪ ﻋﻠﻮم آﻣﺎری، 18(1)، 192-173.
3. Basellini, U., Camarda C. G. and Booth, H. (2023). Thirty Years on: A Review of the Lee-Carter Method for Forecasting Mortality. International Journal of Forecasting, 39, 1033-1049. [DOI:10.1016/j.ijforecast.2022.11.002]
4. Chachi, J. (2019). A Weighted Least Squares Fuzzy Regression for Crisp Input-Fuzzy Output Data. IEEE Transactions on Fuzzy Systems, 27(4), 739-748. [DOI:10.1109/TFUZZ.2018.2868554]
5. Chachi J. and Chaji A. (2021). Employing Weighted Operators in Ordered Least Deviations Regression Model. Journal of Statistical Sciences, 15(1), 39-60. [DOI:10.52547/jss.15.1.3]
6. Chachi, J., Kazemifard, A. and Jalalvand, M. (2021). A Multi-Attribute Assessment of Fuzzy Regression Models. Iranian Journal of Fuzzy Systems, 18(4), 131-148.
7. Chachi, J., Taheri, S. M. and D'Urso, P. (2022). Fuzzy Regression Analysis Based on M-Estimates. Expert Systems with Applications, 187, 115891. [DOI:10.1016/j.eswa.2021.115891]
8. D'Urso, P. and Chachi, J. (2022). OWA Fuzzy Regression. International Journal of Approximate Reasoning, 142, 430-450. [DOI:10.1016/j.ijar.2021.12.009]
9. Ferraro, M. B. (2017). On the Generalization Performance of a Regression Model with Imprecise Elements. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(5), 723-740. [DOI:10.1142/S0218488517500313]
10. Ignataviciute, E., Mikalauskaite-Arminiene, R. and Siaulys, J. (2012). Lee-Carter Mortality Forecasting, Lithuanian Journal of Statistics, 51(1), 22-35. [DOI:10.15388/LJS.2012.13903]
11. James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J. (2023). An Introduction to Statistical Learning: with Applications in Python. Cham: Springer International Publishing. [DOI:10.1007/978-3-031-38747-0]
12. Kazemifard, A. and Chachi, J. (2022). MADM Approach to Analyse the Performance of Fuzzy Regression Models. Journal of Ambient Intelligence and Humanized Computing, 13(8), 4019-4031. [DOI:10.1007/s12652-021-03394-4]
13. Koissi, M. C. and Shapiro, A. F. (2006). Fuzzy Formulation of the Lee-Carter Model for Mortality Forecasting. Insurance: Mathematics and Economics, 39(3), 287-309. [DOI:10.1016/j.insmatheco.2005.11.011]
14. Krätschmer, V. (2001). A Unified Approach to Fuzzy Random Variables. Fuzzy sets and systems, 123, 1-9. [DOI:10.1016/S0165-0114(00)00038-5]
15. Kruse, R. and Meyer, K. D. (1987). Statistics with Vague Data. Springer Science and Business Media. [DOI:10.1007/978-94-009-3943-1]
16. Lee, R. D. (2000). The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications. North American Actuarial Journal, 1(4), 80-91. [DOI:10.1080/10920277.2000.10595882]
17. Lee, R.D. and Carter, L.R. (1992). Modeling and Forecasting U.S. Mortality. J. Amer. Statist. Assoc., 419(87), 659-675. https://doi.org/10.2307/2290201 [DOI:10.1080/01621459.1992.10475265]
18. Mohammadi, H., Akbari, M. G. and Hesamian, G. (2024). Autoregressive Modeling Based on the Support Function of Fuzzy Random Variables. Journal of Statistical Sciences, 18(1), 173-192.
19. Shmueli, G. and Polak, J. (2024). Practical Time Series Forecasting with R: A Hands-on Guide. Axelrodschnall publishers.
20. Szymanski, A. and Rossa, A. (2021). The Modified Fuzzy Mortality Model Based on the Algebra of Ordered Fuzzy Numbers. Biometrical Journal, 63(3), 671-689. [DOI:10.1002/bimj.202000025] [PMID]
21. Tsukada, M., Kobayashi, Y., Kaneko, H., Takahasi, S.E., Shirayanagi, K. and Noguchi, M. (2023). Linear Algebra with Python. Springer Undergraduate Texts in Mathematics and Technology. Springer, Singapore. [DOI:10.1007/978-981-99-2951-1]
22. Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338-353. [DOI:10.1016/S0019-9958(65)90241-X]
23. Zarei, R., Akbari, M.G. and Chachi, J. (2020). Modeling Autoregressive Fuzzy Time Series Data Based on Semi-Parametric Methods. Soft Comput, 24, 7295-7304. [DOI:10.1007/s00500-019-04349-w]
24. Zimmermann, H.J. (2011). Fuzzy Set Theory and its Applications. Springer Science and Business Media.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chachi J, Akhond M, Ahmadi S. Fuzzy Lee-Carter Model in Mortality Data Analysis. JSS 2025; 18 (2)
URL: http://jss.irstat.ir/article-1-901-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 2 (2-2025) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.11 seconds with 45 queries by YEKTAWEB 4660