|
1. برمالزن، ق. (1397)، مقایسه تصادفی مجموع مقادیر خسارتها در دو سبد بیمه ناهمگن، مجله علوم آماری، 12، 395-412 2. برمالزن، ق. (1398)، مقایسه تصادفی کوچکترین مقادیر خسارت در دو سبد بیمه ناهمگن با خسارتهای وایبل، مجله علوم آماری، 13، 57-75. 3. AL-Hussaini, E.K. and Ahsanullah, M. (2015), Exponentiated Distributions, Atlantis Press, Paris. 4. Arnold, B.C. (1987), Majorization and the Lorenz Order: A Brief Introduction, Lecture Notes in Statistics, 43, Springer-Verlag, Berlin. [ DOI:10.1007/978-1-4615-7379-1_2] 5. Balakrishnan, K. (2019), Exponential Distribution: Theory, Methods and Applications, CRC Prees, Boca Raton, USA. 6. Barmalzan G. (2019), Stochastic Comparison of Aggregate Claim Amounts Among Two Heterogeneous Portfolios, Journal of Statistical Sciences, 12 (2), 395-412. [ DOI:10.29252/jss.12.2.395] 7. Barmalzan G. (2019), New Results on Stochastic Comparisons of Smallest Claim Amounts in Two Heterogeneous Portfolios with Weibull Claims, Journal of Statistical Sciences, 13 (1), 57-75. [ DOI:10.29252/jss.13.1.57] 8. Belzunce, F., Martinez-Riquelme, C. and Mulero, J. (2016), An Introduction to Stochastic Orders, Academic Press, London. 9. Boland, P.J., El-Neweihi, E. and Proschan, F. (1994), Applications of the Hazard Rate Ordering in Reliability and Order Statistics, Journal of Applied Probability, 31, 180-192. [ DOI:10.2307/3215245] 10. Cheng, K.W. (1977), Majorization: Its Extensions and Preservation Theorems. Tech. Rep. No. 121, Department of Statistics, Stanford University, Stanford, CA. 11. Da, G., Ding, W. and Li, X. (2010), On Hazard Rate Ordering of Parallel Systems with Two Independent Components, Journal of Statistical Planning and Inference, 140, 2148-2154. [ DOI:10.1016/j.jspi.2010.02.010] 12. Denuit, M., Dhaene, J., Goovarets, M. and Kaas, R. (2005), Actuarial Theory for Dependence Risks: Measure, Orders and Models, John Wiley & Sons, Chichester. 13. Dykstra, R., Kochar, S. and Rojo, J. (1997), Stochastic Comparisons of Parallel Systems of Heterogeneous Exponential Components, Journal of Statistical Planning and Inference, 65, 203-211. [ DOI:10.1016/S0378-3758(97)00058-X] 14. Fathi-Manesh, S. and Khaledi, B.E. (2015), Allocations of policy limits and ordering relations for aggregate remaining claims, Insurance: Mathematics and Economics, 65, 9-14. [ DOI:10.1016/j.insmatheco.2015.08.003] 15. Gupta, R.D. and Kundu, D. (1999), Generalized Exponential Distribution, Australian and New zealand Journal of Statistics, 41, 173-188. [ DOI:10.1111/1467-842X.00072] 16. Gupta, R.D. and Kundu, D. (2007), Generalized Exponential Distribution: Existing Results and Some Recent Developments, Journal of Statistical Planning and Inference, 137, 3537-3547. [ DOI:10.1016/j.jspi.2007.03.030] 17. Haidari, A., Payandeh Najafabadi, A.T. and Balakrishnan, N. (2020), Application of Weighted and Unordered Majorization Orders in Comparisons of Parallel Systems with Exponentiated Generalized Gamma Components, Brazilian Journal of Probability and Statistics, 34, 150-166. [ DOI:10.1214/18-BJPS410] 18. Joo, S. and Mi, J. (2010), Some Properties of Hazard Rate Functions of Systems with Two Components, Journal of Statistical Planning and Inference, 140, 444-453. [ DOI:10.1016/j.jspi.2009.07.023] 19. Kundu, A., Chowdhury, S., Nanda, A. and Hazra, N.K. (2016), Some Results on Majorization and Their Applications, Journal of Computational and Applied Mathematics, 301, 161-177. [ DOI:10.1016/j.cam.2016.01.015] 20. Marshall, A.W. and Olkin, I. (1997), A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families, Biometrika, 84, 641-652. [ DOI:10.1093/biomet/84.3.641] 21. Marshall, A.W. and Olkin, I. (2007), Life Distributions, Springer, New York. 22. Marshall, A.W., Olkin, I. and Arnold, B.C. (2011), Inequalities: Theory of Majorization and Its Applications, Second edition, Springer-Verlag, New York. [ DOI:10.1007/978-0-387-68276-1] 23. Misra, N. and Misra, A.K. (2013), On Comparison of Reversed Hazard Rates of Two Parallel Systems Comprising of Independent Gamma Components, Statistics & Probability Letters, 83, 1567-1570. [ DOI:10.1016/j.spl.2013.03.002] 24. Mudholkar, G.S. and Srivastava, D.K. (1993), Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data, IEEE: Transactions on Reliability, 42, 299-302. [ DOI:10.1109/24.229504] 25. M"{u}ller, A. and Stoyan, D. (2002), Comparison Methods for Stochastic Models and Risks. John Wiley & Sons, New York. 26. Nadarajah, S. (2011), The Exponentiated Exponential Distribution: A Survey, Advances in Statistical Analysis, 95, 219-251. [ DOI:10.1007/s10182-011-0154-5] 27. Nadarajah, S. and Haghighi, F. (2011), An Extension of the Exponential Distribution, Statistics, 45, 543-558. [ DOI:10.1080/02331881003678678] 28. Pledger, G. and Proschan, F. (1971), Comparisons of Order Statistics and of Spacing from Heterogeneous Distributions, In Optimizing Methods in Statistics, 89-113. Academic Press. [ DOI:10.1016/B978-0-12-604550-5.50011-0] 29. Shaked, M. and Shanthikumar, J.G. (2007), Stochastic Orders, Springer, New York. [ DOI:10.1007/978-0-387-34675-5] 30. Wang, J. and Laniado, H. (2015), On Likelihood Ratio Ordering of Parallel System with Two Exponential Components. Operations Research Letters, 43, 195-195. [ DOI:10.1016/j.orl.2015.01.012] 31. Yan, R., Da, G. and Zhao, P. (2013), Further Results for Parallel Systems with Two Heterogeneous Exponential Components, Statistics, 47, 1128-1140. [ DOI:10.1080/02331888.2012.704632] 32. Zhao, P. and Balakrishnan, N. (2011), Some Characterization Results for Parallel Systems with Two Heterogeneous Exponential Components, Statistics, 45, 593-604. [ DOI:10.1080/02331888.2010.485276]
|