[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 16, Issue 1 (9-2022) ::
JSS 2022, 16(1): 109-126 Back to browse issues page
On Likelihood Ratio Ordering of Parallel Systems with Two Generalized Exponential Components
Abedin Haidari , Mostafa Sattari * , Ghobad Barmalzan
Abstract:   (5199 Views)

Consider two parallel systems with their component lifetimes following a generalized exponential distribution. In this paper, we introduce a region based on existing shape and scale parameters included in the distribution of one of the systems. If another parallel system's vector of scale parameters lies in that region, then the likelihood ratio ordering between the two systems holds. An extension of this result to the case when the lifetimes of components follow exponentiated Weibull distribution is also presented. 

Keywords: Parallel Systems, Likelihood Ratio Order, Generalized Exponential Distribution, Exponentiated Weibull Distribution.
Full-Text [PDF 427 kb]   (2141 Downloads)    
Type of Study: Research | Subject: Reliability
Received: 2021/03/10 | Accepted: 2022/09/1 | Published: 2022/08/2
References
1. برمال‌زن، ق. ‎(1397)‎‌، مقایسه تصادفی مجموع مقادیر خسارت‌ها در دو سبد بیمه ناهمگن، مجله علوم آماری، ‎12‎، ‎395-412‎‎
2. برمال‌زن، ق. ‎(1398)‎‌، مقایسه تصادفی کوچکترین مقادیر خسارت در دو سبد بیمه ناهمگن با خسارت‌های وایبل، مجله علوم آماری، 13‎، 57-75. ‎
3. AL-Hussaini‎, ‎E.K‎. ‎and Ahsanullah‎, ‎M‎. ‎(2015)‎, ‎ Exponentiated Distributions‎, ‎Atlantis Press‎, ‎Paris‎.
4. ‎Arnold‎, ‎B‎.‎C‎. ‎(1987)‎, ‎Majorization and the Lorenz Order‎: ‎A Brief Introduction‎, Lecture Notes in Statistics‎, 43‎, ‎Springer-Verlag‎, ‎Berlin‎. [DOI:10.1007/978-1-4615-7379-1_2]
5. ‎Balakrishnan‎, ‎K‎. ‎(2019)‎,‎ Exponential Distribution‎: ‎Theory‎, ‎Methods and Applications‎, ‎CRC Prees‎, ‎Boca Raton‎, ‎USA‎.
6. Barmalzan G. (2019), Stochastic Comparison of Aggregate Claim Amounts Among Two Heterogeneous Portfolios, Journal of Statistical Sciences, 12 (2), 395-412. [DOI:10.29252/jss.12.2.395]
7. Barmalzan G. (2019), New Results on Stochastic Comparisons of Smallest Claim Amounts in Two Heterogeneous Portfolios with Weibull Claims, Journal of Statistical Sciences, 13 (1), 57-75. [DOI:10.29252/jss.13.1.57]
8. ‎Belzunce‎, ‎F.‎, ‎Martinez-Riquelme‎, ‎C‎. ‎and Mulero‎, ‎J‎. ‎(2016)‎, An Introduction to Stochastic Orders, ‎Academic Press‎, ‎London‎.
9. ‎Boland‎, ‎P.J.‎, ‎El-Neweihi‎, ‎E‎. ‎and Proschan‎, ‎F‎. ‎(1994)‎, ‎Applications of the Hazard Rate Ordering in Reliability and Order Statistics‎, Journal of Applied Probability, ‎31‎, ‎180-192‎. [DOI:10.2307/3215245]
10. ‎Cheng‎, ‎K.W‎. ‎(1977)‎, ‎Majorization‎: ‎Its Extensions and Preservation Theorems‎. ‎Tech‎. ‎Rep‎. ‎No‎. ‎121‎, ‎Department of Statistics‎, ‎Stanford University‎, ‎Stanford‎, ‎CA‎.
11. ‎Da‎, ‎G.‎, ‎Ding‎, ‎W‎. ‎and Li‎, ‎X‎. ‎(2010)‎, ‎On Hazard Rate Ordering of Parallel Systems with Two Independent Components‎, Journal of Statistical Planning and Inference‎, 140‎, ‎2148-2154‎. [DOI:10.1016/j.jspi.2010.02.010]
12. ‎Denuit‎, ‎M.‎, ‎Dhaene‎, ‎J.‎, ‎Goovarets‎, ‎M‎. ‎and Kaas‎, ‎R‎. ‎(2005)‎, Actuarial Theory for Dependence Risks‎: ‎Measure‎, ‎Orders and Models‎, ‎John Wiley & Sons‎, ‎Chichester‎.
13. ‎Dykstra‎, ‎R.‎, ‎Kochar‎, ‎S‎. ‎and Rojo‎, ‎J‎. ‎(1997)‎, ‎Stochastic Comparisons of Parallel Systems of Heterogeneous Exponential Components‎, Journal of Statistical Planning and Inference‎, 65‎, ‎203-211‎. [DOI:10.1016/S0378-3758(97)00058-X]
14. Fathi-Manesh, S. and Khaledi, B.E. (2015), Allocations of policy limits and ordering relations for aggregate remaining claims, Insurance: Mathematics and Economics, 65, 9-14. [DOI:10.1016/j.insmatheco.2015.08.003]
15. ‎Gupta‎, ‎R.D‎. ‎and Kundu‎, ‎D‎. ‎(1999)‎, ‎Generalized Exponential Distribution‎, Australian and New zealand Journal of Statistics‎, 41‎, ‎173-188‎. [DOI:10.1111/1467-842X.00072]
16. ‎Gupta‎, ‎R.D‎. ‎and Kundu‎, ‎D‎. ‎(2007)‎, ‎Generalized Exponential Distribution‎: ‎Existing Results and Some Recent Developments‎,‎ Journal of Statistical Planning and Inference, ‎137‎, ‎3537-3547‎. [DOI:10.1016/j.jspi.2007.03.030]
17. ‎Haidari‎, ‎A.‎, ‎Payandeh Najafabadi‎, ‎A.T‎. ‎and Balakrishnan‎, ‎N‎. ‎(2020)‎, ‎Application of Weighted and Unordered Majorization Orders in Comparisons of Parallel Systems with Exponentiated Generalized Gamma Components‎, Brazilian Journal of Probability and ‎Statistics‎, 34‎, ‎150-166‎. [DOI:10.1214/18-BJPS410]
18. ‎Joo‎, ‎S‎. ‎and Mi‎, ‎J‎. ‎(2010)‎, ‎Some Properties of Hazard Rate Functions of Systems with Two Components‎, Journal of Statistical Planning and Inference, ‎140‎, ‎444-453‎. [DOI:10.1016/j.jspi.2009.07.023]
19. ‎Kundu‎, ‎A.‎, ‎Chowdhury‎, ‎S.‎, ‎Nanda‎, ‎A‎. ‎and Hazra‎, ‎N.K‎. ‎(2016)‎, ‎Some Results on Majorization and Their Applications‎, ‎ Journal of Computational and Applied Mathematics‎, ‎301‎, ‎161-177‎. [DOI:10.1016/j.cam.2016.01.015]
20. ‎Marshall‎, ‎A.W‎. ‎and Olkin‎, ‎I‎. ‎(1997)‎, ‎A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families‎, ‎Biometrika‎, 84‎, ‎641-652‎. [DOI:10.1093/biomet/84.3.641]
21. ‎Marshall‎, ‎A.W‎. ‎and Olkin‎, ‎I‎. ‎(2007)‎,‎ Life Distributions, ‎Springer‎, ‎New York‎.
22. ‎Marshall‎, ‎A.W.‎, ‎Olkin‎, ‎I‎. ‎and Arnold‎, ‎B.C‎. ‎(2011)‎, Inequalities‎: ‎Theory of Majorization and Its Applications‎, ‎Second edition‎, Springer-Verlag‎, ‎New York‎. [DOI:10.1007/978-0-387-68276-1]
23. ‎Misra‎, ‎N‎. ‎and Misra‎, ‎A.K‎. ‎(2013)‎, ‎On Comparison of Reversed Hazard Rates of Two Parallel Systems Comprising of Independent Gamma Components‎, ‎Statistics & Probability Letters‎, ‎83‎, ‎1567-1570‎. [DOI:10.1016/j.spl.2013.03.002]
24. ‎Mudholkar‎, ‎G.S‎. ‎and Srivastava‎, ‎D.K‎. ‎(1993)‎, ‎Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data‎, ‎ IEEE‎: ‎Transactions on Reliability‎, ‎42‎, ‎299-302‎. [DOI:10.1109/24.229504]
25. ‎M"{u}ller‎, ‎A‎. ‎and Stoyan‎, ‎D‎. ‎(2002)‎, Comparison Methods for Stochastic Models and Risks. John Wiley & Sons‎, ‎New York‎.
26. ‎Nadarajah‎, ‎S‎. ‎(2011)‎, ‎The Exponentiated Exponential Distribution‎: ‎A Survey‎, Advances in Statistical Analysis‎, ‎95‎, ‎219-251‎. [DOI:10.1007/s10182-011-0154-5]
27. ‎Nadarajah‎, ‎S‎. ‎and Haghighi‎, ‎F‎. ‎(2011)‎, ‎An Extension of the Exponential Distribution‎, Statistics, ‎45‎, ‎543-558. [DOI:10.1080/02331881003678678]
28. ‎Pledger‎, ‎G‎. ‎and Proschan‎, ‎F‎. ‎(1971)‎, ‎Comparisons of Order Statistics and of Spacing from Heterogeneous Distributions‎, ‎ In Optimizing Methods in Statistics‎, ‎89-113‎. ‎Academic Press‎. [DOI:10.1016/B978-0-12-604550-5.50011-0]
29. ‎Shaked‎, ‎M‎. ‎and Shanthikumar‎, ‎J.G‎. ‎(2007)‎, ‎Stochastic Orders, Springer‎, ‎New York‎. [DOI:10.1007/978-0-387-34675-5]
30. ‎Wang‎, ‎J‎. ‎and Laniado‎, ‎H‎. ‎(2015)‎, ‎On Likelihood Ratio Ordering of Parallel System with Two Exponential Components‎. ‎ Operations Research Letters‎, ‎43‎, ‎195-195‎. [DOI:10.1016/j.orl.2015.01.012]
31. ‎Yan‎, ‎R.‎, ‎Da‎, ‎G‎. ‎and Zhao‎, ‎P‎. ‎(2013)‎, ‎Further Results for Parallel Systems with Two Heterogeneous Exponential Components‎, ‎Statistics‎, ‎ 47‎, ‎1128-1140‎. [DOI:10.1080/02331888.2012.704632]
32. ‎Zhao‎, ‎P‎. ‎and Balakrishnan‎, ‎N‎. ‎(2011)‎, ‎Some Characterization Results for Parallel Systems with Two Heterogeneous Exponential Components‎, Statistics‎, 45‎, ‎593-604‎. [DOI:10.1080/02331888.2010.485276]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haidari A, Sattari M, Barmalzan G. On Likelihood Ratio Ordering of Parallel Systems with Two Generalized Exponential Components. JSS 2022; 16 (1) :109-126
URL: http://jss.irstat.ir/article-1-755-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 1 (9-2022) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.2 seconds with 43 queries by YEKTAWEB 4722