1. Alizadeh Noughabi, H. (2015). Testing Exponentiality Based on the Likelihood Ratio and Power Comparison. Annals of Data Science, 2, 195-204. [ DOI:10.1007/s40745-015-0041-0] 2. Alizadeh Noughabi, H., and Jarrahiferiz, J. (2019). On the Estimation of Extropy. Journal of Nonparametric Statistics, 31, 8899. [ DOI:10.1080/10485252.2018.1533133] 3. Amiri, M., and Khaledi, B. (2015). A New Test for Symmetry against Right Skewness. Journal of Statistical Computation and Simulation, 86, 14791496. [ DOI:10.1080/00949655.2015.1071374] 4. Arnold, B.C., Balakrishnan, N., and Nagaraja, H.N. (1998). Records. New York: John Wiley. [ DOI:10.1002/9781118150412] 5. Ayres, R.U., and Martinas, K. (1995). Waste Potential Entropy: The Ultimate Ecotoxic. Économie Appliquée, 48, 95-120. [ DOI:10.3406/ecoap.1995.1558] 6. Baklizi, A. (2003). A Conditional Distribution Free Runs Test for Symmetry. Journal of nonparametric Statistics. 15, 713-718. [ DOI:10.1080/10485250310001634737] 7. Baklizi, A. (2007). Testing Symmetry Using a Trimmed Longest Run Statistics. Australian & New Zealand Journal of Statistics. 49, 339-347. [ DOI:10.1111/j.1467-842X.2007.00485.x] 8. Baklizi, A. (2008). Improving the Power of the Hybrid Test. International Journal of Contemporary Mathematical Sciences. 3, 497-499. 9. Corzo, J., and Babativa, G. (2013). A Modified Runs Test for Symmetry. Journal of Statistical Computation and Simulation, 83, 984-991. [ DOI:10.1080/00949655.2011.647026] 10. Freimer, M., Kollia, G., Mudholkar, G.S., and Lin, C.T. (1988). A Study of the Generalized Tukey Lambda Family. Communications in Statistics Theory and Methods, 17, 35473567. [ DOI:10.1080/03610928808829820] 11. Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and Hall/CRC, Boca Raton, FL. [ DOI:10.1201/9781420035919] 12. Govindarajula, Z. (1977). A Class of Distributions Useful in Life Testing and Reliability. IEEE Transactions on Reliability, 26, 6769. [ DOI:10.1109/TR.1977.5215079] 13. Hashempour, M., and Mohammadi, M. (2022). On Dynamic Cumulative Past Inaccuracy Measure Based on Extropy. Communications in Statistics Theory and Methods. [ DOI:10.1080/03610926.2022.2098335] 14. Hodgson, D.j., Linton, O., and Vorkink, K. (2002). Testing the Capital Asset Pricing Model Efficiently under Elliptical Symmetry: A Semiparametric Approach. Journal of Applied Econometrics, 17, 617639. [ DOI:10.1002/jae.646] 15. Hooti, F., and Ahmadi, J. (2016). Quantile Dynamic Cumulative Residual Entropy and Characterizations of Uniform, Exponential and Pareto Distributions. Journal of Statistical Sciences, 10, 67-80. 16. Jahanshahi, S.M.A., Zarei, H., and Khammar, A.H. (2020). On Cumulative Residual Extropy. Probability in the Engineering and Informational Sciences, 34, 605625. [ DOI:10.1017/S0269964819000196] 17. Jones, M.C. (1992). Estimating Densities, Quantiles, Quantile Densities and Density Quantiles. Annals of the Institute of Statistical Mathematics, 44, 721-27. [ DOI:10.1007/BF00053400] 18. Jose, J., and Abdul Sathar, E.I. (2019). Residual Extropy of K-Record Values. Statistics and Probability Letters, doi: 10.1016/j.spl.2018.10.019. [ DOI:10.1016/j.spl.2018.10.019] 19. Kamari, O., and Buono, F. (2021). On Extropy of Past Lifetime Distribution. Ricerche di Matematica, 70, 505515. [ DOI:10.1007/s11587-020-00488-7] 20. Kattumannil, S.K., and Sreedevi, E.P. (2022). Non-Parametric Estimation of Cumulative (Residual) Extropy. Statistics and Probability Letter, 185, 109434. [ DOI:10.1016/j.spl.2022.109434] 21. Kazemi, M.R., Tahmasebi, S., Cali, C., and Longobardi, M. (2021). Cumulative Residual Extropy of Minimum Ranked Set Sampling with Unequal Samples. Results in Applied Mathematics, 10, doi: 10.1016/j.rinam.2021.100156. [ DOI:10.1016/j.rinam.2021.100156] 22. Krishnan, A.S., Sunoj, S.M., and Unnikrishnan Nair, N. (2020). Some Reliability Properties of Extropy for Residual and Past Lifetime Random Variables. Journal of the Korean Statistical Society, 49, 457474. [ DOI:10.1007/s42952-019-00023-x] 23. Krishnan, A.S., Sunoj, S.M., and Sankaran, P.G. (2021). Some Reliability Properties of Extropy and Its Related Measures Using Quantile Function. Statistica, 80, 413437. 24. Kundo, C. (2021). On Cumulative Residual (Past) Extropy of Extreme Order Statistics. Communications in Statistics-Theory and Methods, doi:10.1080/03610926.2021.2021238. [ DOI:10.1080/03610926.2021.2021238] 25. Lad, F., Sanfilippo, G., and Agro, G. (2015). Extropy: Complementary Dual of Entropy. Statistical Science, 30, 40-58. [ DOI:10.1214/14-STS430] 26. Parzen, E. (1979). Nonparametric Statistical Data Modeling. Journal of the American Statistical Association, 74, 105-21. [ DOI:10.1080/01621459.1979.10481621] 27. Qiu, G. (2017). The Extropy of Order Statistics and Record Values. Statistics and Probability Letters, 120, 52-60. [ DOI:10.1016/j.spl.2016.09.016] 28. Qiu, G., and Jia, K. (2018a). The Residual Extropy of Order Statistics. Statistics and Probability Letters, 133, 15-22. [ DOI:10.1016/j.spl.2017.09.014] 29. Qiu, G., and Jia, K. (2018b). Extropy Estimators with Applications in Testing Uniformity. Journal of Nonparametric Statistics, 30, 182-196. [ DOI:10.1080/10485252.2017.1404063] 30. Ramberg, J.S., and Schmeiser, B.W. (1974). An Approximate Method for Generating Asymmetric Random Variables. Communications of the ACM, 17, 7882. [ DOI:10.1145/360827.360840] 31. Raqab, M.Z., and Qiu, G. (2019). On Extropy Properties of Ranked Set Sampling. Statistics, 53, 210-26. [ DOI:10.1080/02331888.2018.1533963] 32. Sathar, E.A. and Nair, R.D. (2021). On Dynamic Survival Extropy. Communications in Statistics-Theory and Methods, 50, 12951313. 33. Vasicek, O. (1976). A Test for Normality Based on Sample Entropy. Journal of Royal Statistical Society, 38, 730737. [ DOI:10.1111/j.2517-6161.1976.tb01566.x] 34. Wadsworth, H.M. (1990). Handbook of Statistical Methods for Engineers and Scientists. McGraw-Hill, NewYork. 35. Xiong, P., Zhuang, W. and Qiu, G. (2021). Testing Symmetry Based on the Extropy of Record Values. Journal of Nonparametric Statistics, 33, 134155. [ DOI:10.1080/10485252.2021.1914338]
|