[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 18, Issue 2 (2-2025) ::
JSS 2025, 18(2): 0-0 Back to browse issues page
Stochastic Comparisons of Series and Parallel Systems Comprising Modified Additive Hazard Rate Model
Aqeel Lazam Razzaq , Isaac Almasi * , Ghobad Saadat kia
Abstract:   (925 Views)
Adding parameters to a known distribution is a valuable way of constructing flexible families of distributions. In this paper, we introduce a new model, the modified additive hazard rate model, by replacing the additive hazard rate distribution in the general proportional add ratio model. Next, when two sets of random variables follow the modified additive hazard model, we establish stochastic comparisons between the series and parallel systems comprising these components.
Keywords: Modified Additive Hazard Rate Model, Weak Majorization Order, Series Systems, Parallel Systems, Stochastic Orders, Schur-convixity.
Full-Text [PDF 270 kb]   (346 Downloads)    
Type of Study: Research | Subject: Reliability
Received: 2024/01/24 | Accepted: 2024/05/30 | Published: 2024/12/2
References
1. برمال‌زن، ق. حیدری، ع. معصومی‌فرد، خ. (1394)، مقایسه تصادفی سیستم‌های سری و موازی در مدل مقیاس، مجله علوم آماری، 9، 206-189.
2. برمال‌زن، ق. حیدری. (1398)، مقایسه ‌تصادفی سیستم‌های سری و موازی با مولفه‌های مستقل و ناهمگن تحت نرخ شکست خطی تعمیم‌یافته، مجله علوم آماری، 13، 338-319.
3. Balakrishnan‎, ‎N.‎, ‎Barmalzan‎, ‎G. ‎and‎ ‎Haidari‎, ‎A‎. ‎(2018)‎, ‎Modified ‎P‎roportional‎ Hazard Rates and Proportional Reversed Hazard Rates Models via Marshall-Olkin Distribution and Some Stochastic Comparisons‎, ‎Journal of the Korean‎ Statistical Society‎, ‎47, ‎127-138‎. [DOI:10.1016/j.jkss.2017.10.003]
4. ‎Balakrishnan‎, ‎N.‎, ‎Haidari‎, ‎A. ‎and‎ ‎Masoumifard‎, ‎K‎. ‎(2015)‎, ‎Stochastic Comparisons of Series and Parallel Systems with Generalized Exponential Components‎, ‎ IEEE Transactions on Reliability, 64‎, ‎333-348‎. [DOI:10.1109/TR.2014.2354192]
5. ‎Balakrishnan‎, ‎N. ‎and‎ ‎Zhao‎, ‎P‎. ‎(2013)‎, ‎Hazard Rate Comparison of Parallel Systems with Heterogeneous Gamma Components‎, Journal of Multivariate Analysis, ‎113‎, ‎153-160‎. [DOI:10.1016/j.jmva.2011.05.001]
6. Barmalzan, G., Haidari, A. and Masomifard, K. (2016), Stochastic Comparisons of Series and Parallel Systems in scale Model, Journal of Statistical Sciences, 9, 189-206.
7. Barmalzan, G. and Haidari, A. (2020), Stochastic Comparisons of Series and Parallel Systems with Independent and Heterogeneous Components under the Generalized Linear Failure Rate, Journal of Statistical Sciences,13, 319-388. [DOI:10.29252/jss.13.2.319]
8. ‎Barmalzan‎, ‎G.‎, ‎Payandeh Najafabadi‎, ‎A.T. ‎and‎ ‎Balakrishnan‎, ‎N‎. ‎(2017)‎, ‎Orderings for Series and Parallel Systems‎ Comprising Heterogeneous Exponentiated Weibull-Geometric Components‎, ‎Communications in Statistics-Theory and Methods‎, ‎46‎, ‎9869-9880‎. [DOI:10.1080/03610926.2016.1222432]
9. ‎Barlow‎, ‎R.E‎. ‎and Proschan‎, ‎F‎. ‎(1975)‎, ‎Statistical Theory of Reliability and Life Testing‎: ‎Probability Models‎, ‎Silver Spring‎, ‎Maryland‎.
10. ‎Finkelstein‎, ‎M‎. ‎(2008)‎, ‎Failure Rate Modelling for Reliability and Risk‎, ‎Springer‎
11. ‎Finkelstein‎, ‎M. ‎and‎ ‎Esaulova‎, ‎V‎. ‎(2001)‎, ‎Modelling a Failure Rate for a Mixture of Distribution Function‎, ‎ Probability in the‎ Engineering and Informational Sciences‎, ‎15‎, ‎383-400‎. [DOI:10.1017/S0269964801153076]
12. ‎Finkelstein‎, ‎M. ‎and‎ ‎Esaulova‎, ‎V‎. ‎(2006)‎, ‎On Mixture Failure Rates Ordering‎. Communications in Statistics-Theory and Methods, 35‎, ‎1943-1955‎. [DOI:10.1080/03610920600762871]
13. ‎Cha‎, ‎J.H. ‎and‎ ‎Finkelstein‎, ‎M‎. ‎(2013)‎, ‎The Failure Rate Dynamics in Heterogeneous Populations‎, ‎Reliability Engineering & System Safety,112‎, ‎120-128‎. [DOI:10.1016/j.ress.2012.11.012]
14. ‎Fang‎, ‎L. ‎and‎ ‎Zhang‎, ‎X‎. ‎(2013)‎, ‎Stochastic Comparison of Series Systems with Heterogeneous Weibull Components‎, ‎Statistics‎ & Probability Letters‎, 83‎, ‎1649-1653‎. [DOI:10.1016/j.spl.2013.03.012]
15. ‎Haidari‎, ‎A.‎, ‎Sattari‎, ‎M. ‎and‎ ‎Barmalzan‎, ‎G‎. ‎(2023a)‎, ‎Mean Residual Life Order‎ among Largest Order Statistics Arising from Resilience-Scale Models with Reduced‎ Scale Parameters‎, ‎Probability in the Engineering and Informational Sciences, 37‎, ‎72-85‎. [DOI:10.1017/S0269964821000486]
16. ‎Haidari‎, ‎A.‎, ‎Sattari‎, ‎M.‎, ‎Saadat Kia‎, ‎G‎. and ‎Balakrishnan‎, ‎N‎. ‎(2023b)‎, ‎MRL Ordering‎ of Largest Order Statistics from Heterogeneous Scale Variables‎, ‎Statistics, 57‎, ‎354-374‎. [DOI:10.1080/02331888.2023.2193407]
17. ‎Hazra‎, ‎N.K. ‎and‎ ‎Finkelstein‎, ‎M‎. ‎(2018)‎, ‎On Stochastic Comparisons of Finite Mixtures for some Semiparametric‎ Families of Distributions‎, ‎Test‎, ‎27‎, ‎988-1006‎. [DOI:10.1007/s11749-018-0581-7]
18. ‎Khaledi‎, ‎B.E. ‎and‎ ‎Kochar‎, ‎S.C‎. ‎(2006)‎, ‎Weibull Distribution‎: ‎Some Stochastic Comparisons Results‎, ‎ Journal of Statistical‎ Planning and Inference‎, ‎136‎, ‎3121-3129‎. [DOI:10.1016/j.jspi.2004.12.013]
19. ‎Kochar‎, ‎S.C. ‎and‎ ‎Xu‎, ‎M‎. ‎(2007a)‎, ‎Some Recent Results on Stochastic Comparisons and Dependence among Order Statistics in‎ the case of PHR Model‎, Journal of the Iranian Statistical Society‎, ‎6‎, ‎125-140‎.
20. ‎Kochar‎, ‎S.C. ‎and ‎‎Xu‎, ‎M‎. ‎(2007b)‎, ‎Stochastic Comparisons of Parallel Systems when Components Have Proportional Hazard‎ Rates‎, ‎Probability in the Engineering and Informational Sciences‎, ‎21‎, ‎597-609‎. [DOI:10.1017/S0269964807000344]
21. ‎Marshall‎, ‎A.W. ‎and‎ ‎Olkin‎, ‎I‎. ‎(2007)‎. ‎Life Distributions‎, ‎Springer-Verlag‎, ‎New York‎.
22. ‎Marshall‎, ‎A.W.‎, ‎Olkin‎, ‎I‎. ‎and Arnold‎, ‎B.C‎. ‎(2011)‎, ‎ Inequalities‎: ‎Theory of Majorization and Its Applications, Springer‎, ‎New York‎.
23. ‎Mu ̈ller‎, ‎A‎. ‎and Stoyan‎, ‎D‎. ‎(2002)‎, ‎ Comparison Methods‎ for Stochastic Models and Risks, John Wiley & Sons‎, ‎New York‎.
24. ‎Pledger‎, ‎G. ‎and‎ ‎Proschan‎, ‎F‎. ‎(1971)‎. ‎Comparisons of Order Statistics and of Spacings from Heterogeneous Distributions‎, ‎ In Optimizing Methods in Statistics‎, ‎(pp‎. ‎89-113)‎. ‎Academic Press‎. [DOI:10.1016/B978-0-12-604550-5.50011-0]
25. ‎Rao‎, ‎M.‎, ‎Chen‎, ‎Y.‎, ‎Vemuri‎, ‎B.C. ‎and‎ ‎Wang‎, ‎F‎. ‎(2004)‎, ‎Cumulative Residual Entropy‎: ‎A New Measure of Information‎, Information Theory‎, ‎IEEE Transactions on Information Theory, 50‎, ‎1220-1228‎. [DOI:10.1109/TIT.2004.828057]
26. ‎Shaked‎, ‎M‎. ‎and Shanthikumar‎, ‎J.G‎. ‎(2007)‎, ‎Stochastic Orders, Springer‎, ‎New York‎. [DOI:10.1007/978-0-387-34675-5]
27. ‎Wang‎, ‎F.‎, ‎Vemuri‎, ‎B.C.‎, ‎Rao‎, ‎M. ‎and‎ ‎Chen‎, ‎Y‎. ‎(2003)‎, ‎A New and Robust Information Theoretic Measure and Its Applications to Image Alignment‎, ‎ In‎: ‎International Conference on Information Processing in Medical Imaging‎. ‎3880-4000‎. [DOI:10.1007/978-3-540-45087-0_33] [PMID]
28. Zardasht‎, ‎V‎. ‎(2015)‎, ‎A Test for the Increasing Convex Order Based on the‎ Cumulative Residual Entropy‎, ‎Journal of the Korean Statistical Society‎, ‎44‎, ‎491-497‎. [DOI:10.1016/j.jkss.2015.01.002]
29. ‎Zhao‎, ‎P. ‎and‎ ‎Balakrishnan‎, ‎N‎. ‎(2011)‎, ‎New Results on Comparisons of Parallel Systems with Heterogeneous Gamma Components‎, Statistics & Probability Letters, ‎81‎, ‎36-44‎. [DOI:10.1016/j.spl.2010.09.016]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lazam Razzaq A, Almasi I, Saadat kia G. Stochastic Comparisons of Series and Parallel Systems Comprising Modified Additive Hazard Rate Model. JSS 2025; 18 (2)
URL: http://jss.irstat.ir/article-1-881-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 2 (2-2025) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.25 seconds with 45 queries by YEKTAWEB 4700