1. برمالزن، ق. حیدری، ع. معصومیفرد، خ. (1394)، مقایسه تصادفی سیستمهای سری و موازی در مدل مقیاس، مجله علوم آماری، 9، 206-189. 2. برمالزن، ق. حیدری. (1398)، مقایسه تصادفی سیستمهای سری و موازی با مولفههای مستقل و ناهمگن تحت نرخ شکست خطی تعمیمیافته، مجله علوم آماری، 13، 338-319. 3. Balakrishnan, N., Barmalzan, G. and Haidari, A. (2018), Modified Proportional Hazard Rates and Proportional Reversed Hazard Rates Models via Marshall-Olkin Distribution and Some Stochastic Comparisons, Journal of the Korean Statistical Society, 47, 127-138. [ DOI:10.1016/j.jkss.2017.10.003] 4. Balakrishnan, N., Haidari, A. and Masoumifard, K. (2015), Stochastic Comparisons of Series and Parallel Systems with Generalized Exponential Components, IEEE Transactions on Reliability, 64, 333-348. [ DOI:10.1109/TR.2014.2354192] 5. Balakrishnan, N. and Zhao, P. (2013), Hazard Rate Comparison of Parallel Systems with Heterogeneous Gamma Components, Journal of Multivariate Analysis, 113, 153-160. [ DOI:10.1016/j.jmva.2011.05.001] 6. Barmalzan, G., Haidari, A. and Masomifard, K. (2016), Stochastic Comparisons of Series and Parallel Systems in scale Model, Journal of Statistical Sciences, 9, 189-206. 7. Barmalzan, G. and Haidari, A. (2020), Stochastic Comparisons of Series and Parallel Systems with Independent and Heterogeneous Components under the Generalized Linear Failure Rate, Journal of Statistical Sciences,13, 319-388. [ DOI:10.29252/jss.13.2.319] 8. Barmalzan, G., Payandeh Najafabadi, A.T. and Balakrishnan, N. (2017), Orderings for Series and Parallel Systems Comprising Heterogeneous Exponentiated Weibull-Geometric Components, Communications in Statistics-Theory and Methods, 46, 9869-9880. [ DOI:10.1080/03610926.2016.1222432] 9. Barlow, R.E. and Proschan, F. (1975), Statistical Theory of Reliability and Life Testing: Probability Models, Silver Spring, Maryland. 10. Finkelstein, M. (2008), Failure Rate Modelling for Reliability and Risk, Springer 11. Finkelstein, M. and Esaulova, V. (2001), Modelling a Failure Rate for a Mixture of Distribution Function, Probability in the Engineering and Informational Sciences, 15, 383-400. [ DOI:10.1017/S0269964801153076] 12. Finkelstein, M. and Esaulova, V. (2006), On Mixture Failure Rates Ordering. Communications in Statistics-Theory and Methods, 35, 1943-1955. [ DOI:10.1080/03610920600762871] 13. Cha, J.H. and Finkelstein, M. (2013), The Failure Rate Dynamics in Heterogeneous Populations, Reliability Engineering & System Safety,112, 120-128. [ DOI:10.1016/j.ress.2012.11.012] 14. Fang, L. and Zhang, X. (2013), Stochastic Comparison of Series Systems with Heterogeneous Weibull Components, Statistics & Probability Letters, 83, 1649-1653. [ DOI:10.1016/j.spl.2013.03.012] 15. Haidari, A., Sattari, M. and Barmalzan, G. (2023a), Mean Residual Life Order among Largest Order Statistics Arising from Resilience-Scale Models with Reduced Scale Parameters, Probability in the Engineering and Informational Sciences, 37, 72-85. [ DOI:10.1017/S0269964821000486] 16. Haidari, A., Sattari, M., Saadat Kia, G. and Balakrishnan, N. (2023b), MRL Ordering of Largest Order Statistics from Heterogeneous Scale Variables, Statistics, 57, 354-374. [ DOI:10.1080/02331888.2023.2193407] 17. Hazra, N.K. and Finkelstein, M. (2018), On Stochastic Comparisons of Finite Mixtures for some Semiparametric Families of Distributions, Test, 27, 988-1006. [ DOI:10.1007/s11749-018-0581-7] 18. Khaledi, B.E. and Kochar, S.C. (2006), Weibull Distribution: Some Stochastic Comparisons Results, Journal of Statistical Planning and Inference, 136, 3121-3129. [ DOI:10.1016/j.jspi.2004.12.013] 19. Kochar, S.C. and Xu, M. (2007a), Some Recent Results on Stochastic Comparisons and Dependence among Order Statistics in the case of PHR Model, Journal of the Iranian Statistical Society, 6, 125-140. 20. Kochar, S.C. and Xu, M. (2007b), Stochastic Comparisons of Parallel Systems when Components Have Proportional Hazard Rates, Probability in the Engineering and Informational Sciences, 21, 597-609. [ DOI:10.1017/S0269964807000344] 21. Marshall, A.W. and Olkin, I. (2007). Life Distributions, Springer-Verlag, New York. 22. Marshall, A.W., Olkin, I. and Arnold, B.C. (2011), Inequalities: Theory of Majorization and Its Applications, Springer, New York. 23. Mu ̈ller, A. and Stoyan, D. (2002), Comparison Methods for Stochastic Models and Risks, John Wiley & Sons, New York. 24. Pledger, G. and Proschan, F. (1971). Comparisons of Order Statistics and of Spacings from Heterogeneous Distributions, In Optimizing Methods in Statistics, (pp. 89-113). Academic Press. [ DOI:10.1016/B978-0-12-604550-5.50011-0] 25. Rao, M., Chen, Y., Vemuri, B.C. and Wang, F. (2004), Cumulative Residual Entropy: A New Measure of Information, Information Theory, IEEE Transactions on Information Theory, 50, 1220-1228. [ DOI:10.1109/TIT.2004.828057] 26. Shaked, M. and Shanthikumar, J.G. (2007), Stochastic Orders, Springer, New York. [ DOI:10.1007/978-0-387-34675-5] 27. Wang, F., Vemuri, B.C., Rao, M. and Chen, Y. (2003), A New and Robust Information Theoretic Measure and Its Applications to Image Alignment, In: International Conference on Information Processing in Medical Imaging. 3880-4000. [ DOI:10.1007/978-3-540-45087-0_33] [ PMID] 28. Zardasht, V. (2015), A Test for the Increasing Convex Order Based on the Cumulative Residual Entropy, Journal of the Korean Statistical Society, 44, 491-497. [ DOI:10.1016/j.jkss.2015.01.002] 29. Zhao, P. and Balakrishnan, N. (2011), New Results on Comparisons of Parallel Systems with Heterogeneous Gamma Components, Statistics & Probability Letters, 81, 36-44. [ DOI:10.1016/j.spl.2010.09.016]
|