1. Berger, R. L. (1989), Uniformly More Powerful Tests for Hypotheses Concerning Linear Inequalities and Normal Means, Journal of the American Statistical Association, 84, 192-199. [ DOI:10.1080/01621459.1989.10478755] 2. Berger, R. L. (1997), Likelihood Ratio Tests and Intersection-:union: Tests. In Advances in Statistical Decision Theory and Applications, 225-237. Birkhäuser Boston. [ DOI:10.1007/978-1-4612-2308-5_15] 3. Berger, R. L. and Hsu, J. C. (1996), Bioequivalence Trials, Intersection-:union: Tests and Equivalence Confidence Sets, Statistical Science}, 11(4) , 283-319. [ DOI:10.1214/ss/1032280304] 4. Berger, R. L. and Sinclairm, D. (1984), Testing Hypotheses Concerning :union:s of Linear Subspaces, Journal of American Statistical Association, 79, 158-163. [ DOI:10.1080/01621459.1984.10477079] 5. Liu, H. and Chan, C. H. (2010), More Powerful Tests of the Sign Testing for Normal Variance, Tech. Rep. No.2010-01, Department of Statistics, National Cheng Chi University, Taipei, Taiwan. 6. Chan, C. H., Liu, H. and Zen, M. M. (2015), More Powerful Tests for the Sign Testing Problem about Gamma Scale Parameters, Statistics, 49(3) , 564-577. [ DOI:10.1080/02331888.2013.863887] 7. Gail, M. and Simon, R. (1985), Testing for Qualitative Interactions Between Treatment Effects and Patient Subsets, Biometrics, 41, 361- 372. [ DOI:10.2307/2530862] [ PMID] 8. Gutmann, S. (1987), Tests Uniformly More Powerful than Uniformly Most Powerful Monotone Tests, Journal of Statistical Planning and Inference, 17, 279-292. [ DOI:10.1016/0378-3758(87)90120-0] 9. Gutmann, S. and Maymin, Z. (1987), Is the Selected Population the Best? The Annals of Statistics, 15, 456-461. [ DOI:10.1214/aos/1176350281] 10. Lehmann, E. L. (1952), Testing Multiparameter Hypotheses, The Annals of Mathematical Statistics, 23, 541-552. [ DOI:10.1214/aoms/1177729333] 11. Lehmann, E. L. and Romono, J. P. (2006), Testing Statistical Hypotheses, 2ed, Springer, New York. 12. Liu, H. (1989), Linear Inequality Hypothesis and Uniformly More Power Test, Journal of China Statistical Association, 37, 307-331. 13. Liu, H. and Berger, R. L. (1995), Uniformly More Powerful, One-Sided Tests for Hypotheses about Linear Inequalities, The Annals of Statistics, 23, 55-72. [ DOI:10.1214/aos/1176324455] 14. Liu, X. and Xu, X. (2010), A New Generalized P-Value Approach for Testing the Homogeneity of Variances, Staistics and probability Letters, 80, 1486-1491. [ DOI:10.1016/j.spl.2010.05.017] 15. Li, T. and Sinha, B. K. (1995), Tests of Ordered Hypotheses for Gamma Scale Parameters, Journal of statistical planning and inference, 45(3 , 387-397. [ DOI:10.1016/0378-3758(94)00090-I] 16. McDermott, M. P. and Wang, Y. (2002), Construction of Uniformly More Powerful Tests for Hypotheses about Linear Inequalities, Journal of Statistical Planning and Inference, 107(1-2) , 207-217. [ DOI:10.1016/S0378-3758(02)00253-7] 17. Perlman, M. and Wu, L. (1999), The Emeror's New Tests, with Discussions, Statistical Science, 14(4) , 355-381. [ DOI:10.1214/ss/1009212516] 18. Rohatgi, V. K. and Saleh, A. M. E. (2000), An Introduction to Probability and Statistics, John Wiley and Sons, New York. 19. Saikali, K. G. (1996), Uniformly More Powerful Tests for Linear Inequalities, Ph.D. Thesis, North Carolina State University, Statistics Department. 20. Saikali, K. G. and Berger, R. L. (2002), More Powerful Tests for The Sign Testing Problem, Journal of Statistical Planning and Inference, 107(1-2), 187-205. [ DOI:10.1016/S0378-3758(02)00252-5] 21. Sasabuchi, S. (1980), A Test of a Multivariate Normal Mean with Composite Hypotheses Determined by Linear Inequalities}, Biometrika, 67(2) , 429-439. [ DOI:10.1093/biomet/67.2.429] 22. Sasabuchi, S. (1988), A Multivariate One-Sided Test with Composite Hypotheses When the Covariance Matrix is Completely Unknown, Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics, 42, 37-46. [ DOI:10.2206/kyushumfs.42.37] 23. Sasabuchi, S. (1988), More Powerful Tests for Homogenity of Multivariate Normal Mean Vectors under Order Restriction, Sankhya, 69, 700-716. 24. Shirley, A. G. (1992), Is the Minimum of Several Location Parameters Positive? Journal of Statistical Planning and Inference, 31, 67-79. [ DOI:10.1016/0378-3758(92)90041-P] 25. Wu, W. Y., Wu, W. H., Hsieh, H. N. and Lee, M. C. (2018), The Generalized Inference on the Sign Testing Problem About the Normal Variances, Journal of Applied Statistics, 45(5), 956-970. [ DOI:10.1080/02664763.2017.1325857]
|