[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
The Uniformly More Powerful Tests than the Likelihood Ratio Test Using Intersection-Union Hypotheses for Variance of Independent Samples from Normal Distribution
Zahra Nicknam , Rahim Chinipardaz *
Abstract:   (419 Views)
Classical hypothesis tests for the parameters provide suitable tests when the hypotheses are not restricted. The best are the uniformly most powerful test and the uniformly most powerful unbiased test. These tests are designed for specific hypotheses, such as one-sided and two-sided for the parameter. However, in practice, we may encounter hypotheses that the parameters under test have typical restrictions in the null or alternative hypothesis. Such hypotheses are not included in the framework of classical hypothesis testing. Therefore, statisticians are looking for more powerful tests than the most powerful ones. In this article, the union-intersection test for the sign test of variances in several normal distributions is proposed and compared with the likelihood ratio test. Although the union-intersection test is more powerful, neither test is unbiased. Two rectangular and smoothed tests have been examined for a more powerful test.
Keywords: Intersection-:union: test, Likelihood ratio test, More powerful test, Rectangle test, Smoother test
Full-Text [PDF 752 kb]   (257 Downloads)    
Type of Study: Research | Subject: Statistical Inference
Received: 2024/05/26 | Accepted: 2024/08/31
References
1. ‎Berger‎, ‎R‎. ‎L‎. ‎(1989)‎, ‎Uniformly More Powerful Tests for Hypotheses Concerning Linear Inequalities and Normal Means, Journal of the American Statistical Association‎, 84‎, ‎192-199‎. [DOI:10.1080/01621459.1989.10478755]
2. Berger‎, ‎R‎. ‎L‎. ‎(1997)‎, ‎Likelihood Ratio Tests and Intersection-:union: Tests. In Advances in Statistical Decision Theory and Applications‎, ‎225-237‎. ‎Birkhäuser Boston‎. [DOI:10.1007/978-1-4612-2308-5_15]
3. ‎Berger‎, ‎R‎. ‎L‎. ‎and Hsu‎, ‎J‎. ‎C‎. ‎(1996)‎, ‎Bioequivalence Trials‎, Intersection-:union: Tests and Equivalence Confidence Sets, Statistical Science}‎, 11(4) ‎, ‎283-319‎. [DOI:10.1214/ss/1032280304]
4. ‎Berger‎, ‎R‎. ‎L‎. ‎and Sinclairm‎, ‎D‎. ‎(1984)‎, ‎Testing Hypotheses Concerning :union:s of Linear Subspaces, Journal of American Statistical Association‎, 79‎, ‎158-163‎. [DOI:10.1080/01621459.1984.10477079]
5. ‎Liu‎, ‎H‎. ‎and Chan‎, ‎C‎. ‎H‎. ‎(2010)‎, ‎More Powerful Tests of the Sign Testing for Normal Variance‎, ‎Tech‎. ‎Rep‎. No.2010-01‎, ‎Department of Statistics‎, ‎National Cheng Chi University‎, ‎Taipei‎, ‎Taiwan‎.
6. ‎Chan‎, ‎C‎. ‎H.‎, ‎Liu‎, ‎H‎. ‎and Zen‎, ‎M‎. ‎M‎. ‎(2015)‎, ‎More Powerful Tests for the Sign Testing Problem about Gamma Scale Parameters, ‎ Statistics‎, 49(3) ‎, ‎564-577‎. [DOI:10.1080/02331888.2013.863887]
7. ‎Gail‎, ‎M‎. ‎and Simon‎, ‎R‎. ‎(1985)‎, ‎Testing for Qualitative Interactions Between Treatment Effects and Patient Subsets, Biometrics‎, 41‎, ‎361‎- ‎372‎. [DOI:10.2307/2530862] [PMID]
8. ‎Gutmann‎, ‎S‎. ‎(1987), Tests Uniformly More Powerful than Uniformly Most Powerful Monotone Tests, ‎ Journal of Statistical Planning and Inference‎, 17‎, ‎279-292‎. [DOI:10.1016/0378-3758(87)90120-0]
9. ‎Gutmann‎, ‎S‎. ‎and Maymin‎, ‎Z‎. ‎(1987)‎, ‎Is the Selected Population the Best? The Annals of Statistics‎, 15‎, ‎456-461‎. [DOI:10.1214/aos/1176350281]
10. ‎Lehmann‎, ‎E‎. ‎L‎. ‎(1952)‎, ‎Testing Multiparameter H‎ypotheses, The Annals of Mathematical Statistics‎, 23‎, ‎541-552‎. [DOI:10.1214/aoms/1177729333]
11. ‎Lehmann‎, ‎E‎. ‎L‎. ‎and Romono‎, ‎J‎. ‎P‎. ‎(2006)‎, Testing Statistical Hypotheses‎, ‎2ed‎, ‎Springer‎, ‎New York‎.
12. ‎Liu‎, ‎H‎. ‎(1989)‎, ‎Linear Inequality Hypothesis and Uniformly More Power Test, Journal of China Statistical Association‎, 37, 307-331‎.
13. ‎Liu‎, ‎H‎. ‎and Berger‎, ‎R‎. ‎L‎. ‎(1995)‎, ‎Uniformly More Powerful‎, One-Sided Tests for Hypotheses about Linear Inequalities, The Annals of Statistics‎, 23‎, ‎55-72‎. [DOI:10.1214/aos/1176324455]
14. ‎Liu‎, ‎X‎. ‎and Xu‎, ‎X‎. ‎(2010)‎, ‎A New Generalized P-Value Approach for Testing the Homogeneity of Variances‎, Staistics and probability Letters‎, 80‎, ‎1486-1491‎. [DOI:10.1016/j.spl.2010.05.017]
15. ‎Li‎, ‎T‎. ‎and Sinha‎, ‎B‎. ‎K‎. ‎(1995)‎, ‎Tests of Ordered Hypotheses for Gamma Scale Parameters, Journal of statistical planning and inference‎, 45(3 ‎, ‎387-397‎. [DOI:10.1016/0378-3758(94)00090-I]
16. ‎McDermott‎, ‎M‎. ‎P‎. ‎and Wang‎, ‎Y‎. ‎(2002)‎, ‎Construction of Uniformly More Powerful Tests for Hypotheses about Linear Inequalities, Journal of Statistical Planning and Inference‎, 107(1-2) , ‎207-217‎. [DOI:10.1016/S0378-3758(02)00253-7]
17. ‎Perlman‎, ‎M‎. ‎and Wu‎, ‎L‎. ‎(1999)‎, ‎The Emeror's New Tests‎, ‎with Discussions, Statistical Science, 14(4) ‎, ‎355-381‎. [DOI:10.1214/ss/1009212516]
18. ‎Rohatgi‎, ‎V‎. ‎K‎. ‎and Saleh‎, ‎A‎. ‎M‎. ‎E‎. ‎(2000)‎, An Introduction to Probability and Statistics, ‎John Wiley and Sons‎, ‎New York‎.
19. ‎Saikali‎, ‎K‎. ‎G‎. ‎(1996)‎, Uniformly More Powerful Tests for Linear Inequalities, ‎Ph.D‎. ‎Thesis‎, ‎North Carolina State University‎, ‎Statistics Department‎.
20. ‎Saikali‎, ‎K‎. ‎G. ‎and Berger‎, ‎R. L‎. ‎(2002)‎, ‎More Powerful Tests for The Sign Testing Problem, Journal of Statistical Planning and Inference‎, 107(1-2), ‎187-205‎. [DOI:10.1016/S0378-3758(02)00252-5]
21. ‎Sasabuchi‎, ‎S‎. ‎(1980)‎, A Test of a Multivariate Normal Mean with Composite Hypotheses Determined by Linear Inequalities}‎, ‎Biometrika‎, 67(2) , ‎429-439‎. [DOI:10.1093/biomet/67.2.429]
22. ‎Sasabuchi‎, ‎S‎. ‎(1988)‎, ‎A Multivariate One-Sided Test with Composite Hypotheses When the Covariance Matrix is Completely Unknown‎, Memoirs of the Faculty of Science‎, ‎Kyushu University‎. ‎Series A‎, ‎Mathematics‎, 42‎, ‎37-46‎. [DOI:10.2206/kyushumfs.42.37]
23. ‎Sasabuchi‎, ‎S‎. ‎(1988)‎, ‎More Powerful Tests for Homogenity of Multivariate Normal Mean Vectors under Order Restriction‎, Sankhya‎, 69‎, ‎700-716‎.
24. ‎Shirley‎, ‎A‎. ‎G‎. ‎(1992)‎, ‎Is the Minimum of Several Location Parameters Positive? Journal of Statistical Planning and Inference‎, 31‎, ‎67-79‎. [DOI:10.1016/0378-3758(92)90041-P]
25. Wu‎, ‎W‎. ‎Y.‎, ‎Wu‎, ‎W‎. ‎H‎., ‎Hsieh‎, ‎H‎. ‎N‎. ‎and Lee‎, ‎M‎. ‎C‎. ‎(2018)‎, ‎The Generalized Inference on the Sign Testing Problem About the Normal Variances‎, ‎Journal of Applied Statistics‎, 45(5), ‎956-970‎. ‎‎ [DOI:10.1080/02664763.2017.1325857]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4700