[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Autoregressive Modeling of Fuzzy Data Based on the Support Vector Machine
Elham Ranjbar , Mohamad Ghasem Akbari * , Reza Zarei
Abstract:   (443 Views)
In the time series analysis, we may encounter situations where some elements of the model are imprecise quantities. One of the most common situations is the inaccuracy of the underlying observations, usually due to measurement or human errors. In this paper, a new fuzzy autoregressive time series model based on the support vector machine approach is proposed. For this purpose, the kernel function has been used for the stability and flexibility of the model, and the constraints included in the model have been used to control the points. In order to examine the performance and effectiveness of the proposed fuzzy autoregressive time series model, some goodness of fit criteria are used. The results were based on one example of simulated fuzzy time series data and two real examples, which showed that the proposed method performed better than other existing methods.
Keywords: Autoregressive model, Fuzzy number, Kernel function, Lagrange function, Support vector machine.
Full-Text [PDF 525 kb]   (266 Downloads)    
Type of Study: Research | Subject: Fuzzy Statistics
Received: 2024/09/28 | Accepted: 2024/08/31
References
1. طاهری، ‏س.، اکبری، م. ق. و حسامیان، غ. ر. (1403)، ﻣﺪﻝﺳﺎﺯی میانگین متحرک بر اساس شک ﻣﺘﻐﯿﺮﻫﺎی ﺗﺼﺎﺩﻓی ﻓﺎﺯی، مجله علوم آماری ، 18، 127-103.
2. محمدی، ح.، اکبری، م. ق. و حسامیان، غ. ر‏. (1403)، ﻣﺪﻝﺳﺎﺯی ﺍﺗﻮ‏ ﺭگرﺳﯿﻮ ﺑﺮ ﺍﺳﺎﺱ ﺗﺎﺑﻊ تکیه گاه ﻣﺘﻐﯿﺮﻫﺎی ﺗﺼﺎﺩﻓی ﻓﺎﺯی،‏مجله علوم آماری ، 18، 173-192.
3. Taheri, s., Akbari, M.G. and Hesamian, G.R. (2024), Ⅿoving Average Ⅿoⅾeⅼing Baseⅾ on α−Vaⅼue of Fuzzy Ranⅾoⅿ Variabⅼes, Journal of Statistical Sciences, 18, 103-127.
4. Mohammadi, H., Akbari, M.G. and Hesamian, G.R. (2024), Autoregressive Modeling Based on the Support Function of Fuzzy Random Variables, Journal of Statistical Sciences, 18, 173-192 .
5. Asadolahi, M., Akbari, M. G., Hesamian, G. and Arefi, M. (2021)‎,‎ A Robust Support Vector Regression with Exact Predictors and Fuzzy Responses. International Journal of Approximate Reasoning, 132, 206-225.‎‎ [DOI:10.1016/j.ijar.2021.02.006]
6. Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D. (2010), Linear Programming and Network Flows, 4th Edition. New York: Wiley. [DOI:10.1002/9780471703778]
7. Chen, S. (1996), Forecasting Enrollments Based on Fuzzy Time Series, Fuzzy Sets and Systems, 81, 311-319.‎‎ [DOI:10.1016/0165-0114(95)00220-0]
8. D'Urso, P. and Gastaldi, T. (2002)‎,‎ An Orderwise Polynomial Regression Procedure for Fuzzy Data, Fuzzy Sets and Systems, 130, 1-19. [DOI:10.1016/S0165-0114(02)00055-6]
9. Doroudyan, M. H. and Niaki, S. T. A. (2021), Pattern Recognition in Financial Surveillance with The ARMA-GARCH Time Series Model using Support Vector Machine , Expert Systems with Applications.‎‎‎ [DOI:10.1016/j.eswa.2021.115334]
10. Gui, B., Wei, X., Shen, Q., Qi, J. and Guo, L. (2015), Financial Time Series Forecasting using Support Vector Machine, IEEE. [DOI:10.1109/CIS.2014.22]
11. Hesamian, G. and Akbari, M. G. (2018), A Semi-Parametric Model for Time Series
12. Based on Fuzzy Data, Iranian Journal of Fuzzy Systems, 26, 2953-2666.‎
13. Hesamian, G., Torkian, F. and Yarmohammadi, M. (2022), A Fuzzy Non-parametric Time Series Model Based on Fuzzy Data, Iranian Journal of Fuzzy Systems, 19, 61-72. ‎‎‎
14. Hojati, M., Bector, C. R. and Smimou, K. (2005), A Simple Method for Computation of Fuzzy Linear Regression, European Journal of Operational Research, 166, 172-184.‎ [DOI:10.1016/j.ejor.2004.01.039]
15. Hong, D. (2005), A Note on Fuzzy Time-Series Model, Fuzzy Sets and Systems, 155,309-316. [DOI:10.1016/j.fss.2005.03.009]
16. ‎Huarng,‎ K. (2001), Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series, Fuzzy Sets and Systems, 123, 387-394.‎‎‎ [DOI:10.1016/S0165-0114(00)00057-9]
17. Izenman, A. J. (2008), Modern Multivariate Statistical Techniques (Regression, Classification, and Manifold Learning)‎, International Statistical Review.
18. Ruan, J., Wang, X. and Shi, Y. (2013), Developing Fast Predictors for Large-scale Time Series using Fuzzy Granular Support Vector Machines, Applied Soft Computing Journal, 13, 3981-4000‎‎‎‎‎ [DOI:10.1016/j.asoc.2012.09.005]
19. Song, Q. and Chissom, B. S. (1993), Fuzzy Time Series and its Models, Fuzzy Sets and Systems, 54, 269-277.‎‎ [DOI:10.1016/0165-0114(93)90372-O]
20. Song, Q., Leland, R. P. and Chissom, B. S. (1995), A New Fuzzy Time-series Model of Fuzzy Number Observations, Fuzzy Sets and Systems, 73, 341-348. ‎‎ [DOI:10.1016/0165-0114(94)00315-X]
21. Suykens, J. A. K., Gestel, J. V., Brabanter, J. D., Moor, B. D. and Vandewalle, J. (2002), Least Squares
22. Support Vector Machines, World Scientific Pub. Co., Singapore, 29-55.‎
23. Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York.‎ [DOI:10.1007/978-1-4757-2440-0] [PMID]
24. Zadeh, L. A. (1956), Fuzzy sets, Information and Control, 8, 338-353.‎‎ [DOI:10.1016/S0019-9958(65)90241-X]
25. Zarei, R., Akbari, M. G. and Chaci, J. (2020), Modeling Autoregressive Fuzzy Time Series Data Based on Semi-parametric methods, Soft Computing, 24, 7295-7304. ‎‎ [DOI:10.1007/s00500-019-04349-w]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.08 seconds with 43 queries by YEKTAWEB 4700