1. طاهری، س.، اکبری، م. ق. و حسامیان، غ. ر. (1403)، ﻣﺪﻝﺳﺎﺯی میانگین متحرک بر اساس شک ﻣﺘﻐﯿﺮﻫﺎی ﺗﺼﺎﺩﻓی ﻓﺎﺯی، مجله علوم آماری ، 18، 127-103. 2. محمدی، ح.، اکبری، م. ق. و حسامیان، غ. ر. (1403)، ﻣﺪﻝﺳﺎﺯی ﺍﺗﻮ ﺭگرﺳﯿﻮ ﺑﺮ ﺍﺳﺎﺱ ﺗﺎﺑﻊ تکیه گاه ﻣﺘﻐﯿﺮﻫﺎی ﺗﺼﺎﺩﻓی ﻓﺎﺯی،مجله علوم آماری ، 18، 173-192. 3. Taheri, s., Akbari, M.G. and Hesamian, G.R. (2024), Ⅿoving Average Ⅿoⅾeⅼing Baseⅾ on α−Vaⅼue of Fuzzy Ranⅾoⅿ Variabⅼes, Journal of Statistical Sciences, 18, 103-127. 4. Mohammadi, H., Akbari, M.G. and Hesamian, G.R. (2024), Autoregressive Modeling Based on the Support Function of Fuzzy Random Variables, Journal of Statistical Sciences, 18, 173-192 . 5. Asadolahi, M., Akbari, M. G., Hesamian, G. and Arefi, M. (2021), A Robust Support Vector Regression with Exact Predictors and Fuzzy Responses. International Journal of Approximate Reasoning, 132, 206-225. [ DOI:10.1016/j.ijar.2021.02.006] 6. Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D. (2010), Linear Programming and Network Flows, 4th Edition. New York: Wiley. [ DOI:10.1002/9780471703778] 7. Chen, S. (1996), Forecasting Enrollments Based on Fuzzy Time Series, Fuzzy Sets and Systems, 81, 311-319. [ DOI:10.1016/0165-0114(95)00220-0] 8. D'Urso, P. and Gastaldi, T. (2002), An Orderwise Polynomial Regression Procedure for Fuzzy Data, Fuzzy Sets and Systems, 130, 1-19. [ DOI:10.1016/S0165-0114(02)00055-6] 9. Doroudyan, M. H. and Niaki, S. T. A. (2021), Pattern Recognition in Financial Surveillance with The ARMA-GARCH Time Series Model using Support Vector Machine , Expert Systems with Applications. [ DOI:10.1016/j.eswa.2021.115334] 10. Gui, B., Wei, X., Shen, Q., Qi, J. and Guo, L. (2015), Financial Time Series Forecasting using Support Vector Machine, IEEE. [ DOI:10.1109/CIS.2014.22] 11. Hesamian, G. and Akbari, M. G. (2018), A Semi-Parametric Model for Time Series 12. Based on Fuzzy Data, Iranian Journal of Fuzzy Systems, 26, 2953-2666. 13. Hesamian, G., Torkian, F. and Yarmohammadi, M. (2022), A Fuzzy Non-parametric Time Series Model Based on Fuzzy Data, Iranian Journal of Fuzzy Systems, 19, 61-72. 14. Hojati, M., Bector, C. R. and Smimou, K. (2005), A Simple Method for Computation of Fuzzy Linear Regression, European Journal of Operational Research, 166, 172-184. [ DOI:10.1016/j.ejor.2004.01.039] 15. Hong, D. (2005), A Note on Fuzzy Time-Series Model, Fuzzy Sets and Systems, 155,309-316. [ DOI:10.1016/j.fss.2005.03.009] 16. Huarng, K. (2001), Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series, Fuzzy Sets and Systems, 123, 387-394. [ DOI:10.1016/S0165-0114(00)00057-9] 17. Izenman, A. J. (2008), Modern Multivariate Statistical Techniques (Regression, Classification, and Manifold Learning), International Statistical Review. 18. Ruan, J., Wang, X. and Shi, Y. (2013), Developing Fast Predictors for Large-scale Time Series using Fuzzy Granular Support Vector Machines, Applied Soft Computing Journal, 13, 3981-4000 [ DOI:10.1016/j.asoc.2012.09.005] 19. Song, Q. and Chissom, B. S. (1993), Fuzzy Time Series and its Models, Fuzzy Sets and Systems, 54, 269-277. [ DOI:10.1016/0165-0114(93)90372-O] 20. Song, Q., Leland, R. P. and Chissom, B. S. (1995), A New Fuzzy Time-series Model of Fuzzy Number Observations, Fuzzy Sets and Systems, 73, 341-348. [ DOI:10.1016/0165-0114(94)00315-X] 21. Suykens, J. A. K., Gestel, J. V., Brabanter, J. D., Moor, B. D. and Vandewalle, J. (2002), Least Squares 22. Support Vector Machines, World Scientific Pub. Co., Singapore, 29-55. 23. Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York. [ DOI:10.1007/978-1-4757-2440-0] [ PMID] 24. Zadeh, L. A. (1956), Fuzzy sets, Information and Control, 8, 338-353. [ DOI:10.1016/S0019-9958(65)90241-X] 25. Zarei, R., Akbari, M. G. and Chaci, J. (2020), Modeling Autoregressive Fuzzy Time Series Data Based on Semi-parametric methods, Soft Computing, 24, 7295-7304. [ DOI:10.1007/s00500-019-04349-w]
|