[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: ::
Back to the articles list Back to browse issues page
Introducing the E_r/M/3 Queuing Model and a New (E^2-Bayesian) Estimate for Its Traffic Intensity Parameter
Shahram Yaghoobzadeh *
Abstract:   (28 Views)

Studying various models in queueing theory is essential for improving the efficiency of queueing systems. In this paper, from the family of models {E_r/M/c; r,c in N}, the E_r/M/3 model is introduced, and quantities such as the distribution of the number of customers in the system, the average number of customers in the queue and in the system, and the average waiting time in the queue and in the system for a single customer are obtained. Given the crucial role of the traffic intensity parameter in performance evaluation criteria of queueing systems, this parameter is estimated using Bayesian, E‑Bayesian, and hierarchical Bayesian methods under the general entropy loss function and based on the system’s stopping time. Furthermore, based on the E‑Bayesian estimator, a new estimator for the traffic intensity parameter is proposed, referred to in this paper as the E^2‑Bayesian estimator. Accordingly, among the Bayesian, E‑Bayesian, hierarchical Bayesian, and the new estimator, the one that minimizes the average waiting time in the customer queue is considered the optimal estimator for the traffic intensity parameter in this paper. Finally, through Monte Carlo simulation and using a real dataset, the superiority of the proposed estimator over the other mentioned estimators is demonstrated.

Keywords: Queuing model E_r/M/3$, Traffic intensity, Average waiting time, E-Bayesian estimation, Hierarchical Bayesian estimation, E^2-Bayesian estimation.
Full-Text [PDF 6552 kb]   (23 Downloads)    
Type of Study: Research | Subject: Statistical Inference
Received: 2025/03/14 | Accepted: 2025/04/30
References
1. Allen1990} ‎‎Allen‎, A. (1990), ‎Probability‎, ‎Statistics and Queueing Theory with Computer Science Applications‎, ‎2nd ed‎. ‎Academic Press‎, ‎Boston‎.‎‎‎‎‎
2. ‎‎Ando, T. and ‎‎Zellner‎, A. (2010), ‎Hierarchical Bayesian Analysis of the Seemingly Unrelated Regression and Simultaneous Equations Models Using a Combination of Direct Monte Carlo and Importance Sampling Techniques‎, ‎Bayesian Analysis, 5‎, ‎65-96‎.‎‎ [DOI:10.1214/10-BA503]
3. ‎‎Berger‎, J‎. ‎O. (1985), Statistical Decision Theory and Bayesian Analysis‎, ‎second ed.‎, ‎Springer-Verlag‎, ‎New York‎.‎‎ [DOI:10.1007/978-1-4757-4286-2_4]
4. Calabria‎, ‎R‎. ‎and Pulcini‎, ‎G‎. ‎(1996)‎, ‎Point Estimation under Asymmetric Loss Functions for LeftTruncated Exponential Samples‎, ‎Communications in Statistics-Theory Methods‎, ‎25 (3)‎, ‎585-600‎. [DOI:10.1080/03610929608831715]
5. ‎‎Cressie, M. and ‎Tingley‎, M‎. ‎P‎. (2010), ‎Comment‎: ‎Hierarchical Statistical Modeling for Paleoclimate Reconstruction‎, ‎Journal of the American Statistical Association‎, ‎105‎, ‎895-900‎. [DOI:10.1198/jasa.2010.ap10318]
6. ‎‎Chowdhury, S. and ‎‎Maiti‎, S. (2014), ‎Bayesian Estimation of Traffic Intensity in an M∕E_r∕1 Queueing Model‎, ‎Research Reviews‎: ‎Journal of Statistics‎, ‎Special Issue on Recent Statistical Methodologies and Applications‎, ‎1‎, ‎99-106‎.
7. ‎Deepthi, ‎V.‎ and ‎Jose‎, J‎. ‎K‎. (2021), ‎Bayesian Estimation of M∕E_k∕1 Queueing Model using Bivariate Prior‎, ‎American Journal of Mathematical and Management Sciences‎, ‎40‎, ‎88-105‎.‎‎ [DOI:10.1080/01966324.2020.1835589]
8. M‎. ‎Fischer‎, ‎The Waiting time in the E_k/M/1 Queueing System‎, ‎Operational Research‎, ‎22 (1974)‎, ‎898-902‎.
9. Gupta P‎. ‎L‎. ‎(1984)‎, ‎Structural Properties and Estimation in M/E_k/1 Queue‎, ‎Communication in Statistics-Theory and Methods‎, 11‎, ‎711-719‎. [DOI:10.1080/03610928208828264]
10. ‎‎Han‎, ‎M. ‎(1977),‎ ‎The Structure of Hierarchical Prior Distribution and its Applications‎, ‎Chinese Operations Research and Management Science‎, 6, ‎31-40‎.
11. ‎‎Harishchandra, K. and ‎‎Subba Rao‎, S. (1998), ‎A Note on Statistical Inference about the Traffic Intensity Parameter in M/E_k/1 Queue‎, ‎Sankhyā‎: ‎The Indian Journal of Statistics‎, ‎Series A‎, 50‎, ‎144-148‎.‎
12. ‎‎Han‎, M. (2009), ‎‎‎E‎-Bayesian Estimation and Hierarchical Bayesian Estimation of Failure Rate‎, ‎Applied Mathematical Modelling‎, ‎33‎, ‎1915-1922‎. [DOI:10.1016/j.apm.2008.03.019]
13. ‎‎Han‎, M. (2011), ‎‎‎E‎-Bayesian Estimation of the Reliability Derived from Binomial Distribution‎, ‎Applied Mathematical Modelling, 35‎, ‎2419-2424‎. [DOI:10.1016/j.apm.2010.11.051]
14. ‎Insua, D‎. ‎R‎., ‎‎Wiper, M. and ‎‎Ruggeri‎, F. (1998), ‎Bayesian Analysis of ‎‎M/E_r/1‎ and ‎‎M/H_k/‎1‎‎ ‎queues‎, ‎Queueing and System‎, ‎30‎, ‎289-308‎.‎‎ [DOI:10.1023/A:1019173206509]
15. ‎‎Jain, M. and ‎‎Dhyani‎, I. (2011), ‎Control Policy for M/E_k/1 Queueing System‎, ‎Journal of Statistics and Management Systems‎, ‎4‎, ‎73-82‎.‎‎ [DOI:10.1080/09720510.2001.10701028]
16. ‎Jaheenو Z‎. ‎F‎. and ‎Okasha‎, H‎. ‎M‎. ‎(2011), ‎‎E‎‎-Bayesian Estimation for the Burr type XII Model based on Type-2 Censoring‎, ‎Applied Mathematical Modelling‎, ‎35‎, ‎4730-4737‎. [DOI:10.1016/j.apm.2011.03.055]
17. ‎Jose, J‎. ‎K‎. and ‎‎Manoharan‎, M. (2014), ‎Bayesian Estimation of rate Parameters of Queueing Models‎, ‎Journal of Probability and Statistical Science, ‎12‎, ‎69-76‎.
18. ‎‎Lindley, D‎. ‎V and Smith‎, A‎. ‎F. (1972), ‎Bayes Estimation for the Linear Model‎, ‎Journal of the Royal Statistical Society-Series B‎, ‎34‎, ‎1-41‎. [DOI:10.1111/j.2517-6161.1972.tb00885.x]
19. Lindley‎, ‎D‎. ‎V‎. ‎(1980)‎, ‎Approximate Bayesian Methods‎, ‎Trabajos de Estadística y de Investigación Operativa‎, ‎31‎, ‎223-245. [DOI:10.1007/BF02888353]
20. ‎Micheas, A. C‎. and ‎Wikle‎, C‎. ‎K‎. (2009), ‎A Bayesian Hierarchical Nonoverlapping Random Disc Growth Model‎, Journal of the American Statistical Association‎, ‎104‎, ‎274-283‎.‎ [DOI:10.1198/jasa.2009.0124]
21. ‎Osei, F‎. ‎B‎. and ‎Duker‎, A‎. ‎A‎. ‎(2011)‎, ‎Hierarchical Bayesian Modeling of the Space-Time Diffusion Patterns of Cholera Epidemic in Kumasi‎, ‎Ghana‎. ‎Statistica Neerlandica‎, 65‎, ‎84-100‎.‎ [DOI:10.1111/j.1467-9574.2010.00475.x]
22. Shadrokh, A. and Yaghoobzadeh Shahrastani, S. (2020), Estimating E-Bayesian and Hierarchical Bayesian of Stress-strength Parameter in Rayleigh Distribution under LINEX Loss Function, Journal of Statistical Sciences, 13(2), 483-496. [DOI:10.29252/jss.13.2.483]
23. ‎Richard‎, D‎. ‎M‎. (2011), ‎A Bayesian Hierarchical Model for the Measurement of Working Memory Capacity‎, ‎Journal of Mathematical Psychology‎, 55‎, ‎8-24‎. [DOI:10.1016/j.jmp.2010.08.008]
24. ‎Wang, ‎J., ‎‎‎‎Li, D. and ‎‎Chen‎, D. (2012), ‎$‎‎E‎$‎ Bayesian Estimation and Hierarchical Bayesian Estimation of the System Reliability Parameter‎, ‎Systems Engineering Procedia‎, 3‎, ‎282-289. [DOI:10.1016/j.sepro.2011.11.031]
25. ‎Vaidyanathan, V‎. ‎S‎. and ‎‎Chandrasekhar‎, P. (2018), ‎Parametric Estimation of an ‎‎M/E_r/‎1‎ ‎Queue‎, ‎Opsearch‎, ‎‎‎doi.org/10.1007/s12597-018-0342-0‎. [DOI:10.1007/s12597-018-0342-0]
26. M‎. ‎Wiper‎, ‎Bayesian Analysis of ‎‎E_r/M/‎1‎ ‎and ‎‎E_r/M/c‎‎ queues‎, ‎Journal of Statistical Planning and Inference‎, ‎69‎, ‎65-79‎. [DOI:10.1016/S0378-3758(97)00124-9]
27. Yousefzadeh, F‎. ‎(2017)‎, ‎E-Bayesian and Hierarchical Bayesian Estimations for the System Reliability Parameter based on Asymmetric Loss Function‎, Communications in Statistics-Theory and Methods‎, 46 (1)‎, ‎1-8‎. [DOI:10.1080/03610926.2014.968736]
28. Yaghoobzadeh ‎Shahrastani‎‎‎, ‎S‎. ‎(2018)‎, ‎Estimating E-bayesian and Hierarchical Bayesian of Scalar Parameter of Gompertz Distribution under Type II Censoring Schemes based on Fuzzy Data‎, ‎Communication in Statistics-Theory and Methods‎, ‎48(4)‎, ‎831-840‎. [DOI:10.1080/03610926.2017.1417438]
29. Yaghoobzadeh Shahrastani, S. (2023), Estimation of Traffic Intensity Parameter and Stationarity Probability of M/M/c Queuing System Under a Stop Time in the System, Journal of Statistical Sciences, 17(1), 219-233. [DOI:10.61186/jss.17.1.8]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.21 seconds with 45 queries by YEKTAWEB 4722