Spatial regression models are used to analyze quantitative spatial responses based on linear and non-linear relationships with explanatory variables. Usually, the spatial correlation of responses is modeled with a Gaussian random field based on a multivariate normal distribution. However, in practice, we encounter skewed responses, which are analyzed using skew-normal distributions. Closed skew-normal distribution is one of the extended families of skew-normal distributions, which has similar properties to normal distributions. This article presents a hierarchical Bayesian analysis based on a flexible subclass of closed skew-normal distributions. Given the time-consuming nature of Monte Carlo methods in hierarchical Bayes analysis, we have opted to use the variational Bayes approach to approximate the posterior distribution. This decision was made to expedite the analysis process without compromising the accuracy of our results. Then, the proposed model is implemented and analyzed based on the real earthquake data of Iran.
Type of Study: Research |
Subject: Spatial Statistics Received: 2023/12/28 | Accepted: 2024/05/30 | Published: 2024/12/2
References
1. کریمی، الف. و حسینی، ف. (۱۴۰۰)، معرفی یک میدان تصادفی مانای چوله گاوسی، مجله علوم آماری، ۱۵(۲)، ۵۶۶−۵۴۹.
2. Anselin, L. (1990), Spatial Dependence and Spatial Structural Instability in Applied Regression Analysis, Journal of Regional Science, 30, 185-207. [DOI:10.1111/j.1467-9787.1990.tb00092.x]
3. Basu, S. and Reinsel, G.C. (1994), Regression Models with Spatially Correlated Errors, Journal of the American Statistical Association, 89, 88-99. [DOI:10.1080/01621459.1994.10476449]
4. Cabral, R., Bolin, D. and Rue, H., (2024), Fitting Latent Non¬Gaussian Models Using Variational Bayes and Laplace Approximations, Journal of the American Statistical Association, DOI: 10.1080/01621459.2023.2296704. [DOI:10.1080/01621459.2023.2296704]
5. Cressie, N. (1993), Statistics for Spatial Data, Revised Edition, John Wiley, New York. [DOI:10.1002/9781119115151] [PMID]
6. Gonzalez ¬Farias, G., Dominguez¬ Molina, A. and Gupta, A. K. (2004), The Closed Skew Normal Distribution. In: Genton M. G., ed. Skew¬ elliptical distributions and their applications: A journey beyond normality. Boca Raton, FL: Chapman and Hall CRC, 2542.
7. Karimi, O. (2024), A Hamiltonian Monte Carlo EM algorithm for Generalized Linear Mixed Models with Spatial Skew Latent Variables, Statistical Paper, 65, 1065-1084. [DOI:10.1007/s00362-023-01419-y]
8. Karimi O. and Hosseini F. (2022), Introducing a Stationary Skew-Gaussian Random Field, Journal of Statistical Sciences, 15 (2), 566-549. [DOI:10.52547/jss.15.2.549]
9. Karimi, O. and Mohammadzadeh, M. (2012), Bayesian Spatial Regression Models with Closed Skew Normal Correlated Errors and Missing, Statistical Papers, 53(1), 205¬-218. [DOI:10.1007/s00362-010-0329-2]
10. Karimi, O., Omre, H. and Mohammadzadeh, M. (2010), Bayesian Closed¬ skew Gaussian Inversion of Seismic AVO Data for Elastic Material Properties, Geo¬ physics, 75, R1¬R11. [DOI:10.1190/1.3299291]
11. Márquez¬ Urbina, O.U. and González¬ Farías, G. (2022), A Flexible Special Case of the CSN for Spatial Modeling and Prediction, Spatial Statistics, 47, 100556. [DOI:10.1016/j.spasta.2021.100556] [PMID] []
12. Kim, H.M. and Mallick, B.K. (2004), A Bayesian Prediction using the Skew Gaus¬sian Distribution, Journal of Statistical Planning and Inference, 120, 85-101. [DOI:10.1016/S0378-3758(02)00501-3]
13. Lee, J. and Huang, Y. (2022), Covid¬19 Impact on US Housing Markets: Evidence from Spatial Regression Models, Spatial Economic Analysis, 17(3), 395¬415. [DOI:10.1080/17421772.2021.2018028]
14. Oh, M., Shina, D.W. and Kim, H.J. (2002), Bayesian Analysis of Regression Mod¬els with Spatially Correlated Errors and Missing Observations, Computational Statistics and Data Analysis, 39, 387-400. [DOI:10.1016/S0167-9473(01)00084-6]
15. Ormerod, J. T. and Wand, M. P. (2010), Explaining Variational Approximations, The American Statistician, 64(2), 140-153. [DOI:10.1198/tast.2010.09058]
16. Tan, L. S. and Nott, D. J. (2013), Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations, Statistical Science, 28.188-168. [DOI:10.1214/13-STS418]
17. Zhang, Q., Shan, L., Xie, L., Shaowu G. and Hongye S. (2023), Variational Bayesian State Space Model for dynamic process fault detection, Journal of Process Con¬trol, 124, 129¬-141. [DOI:10.1016/j.jprocont.2023.02.004]
Karimi O, Hosseini F. Variational Bayesian Analysis of Skew Spatial Regression Model Based on a flexible Subclass of Closed Skew-Normal Distribution. JSS 2025; 18 (2) URL: http://jss.irstat.ir/article-1-878-en.html