[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 16, Issue 1 (9-2022) ::
JSS 2022, 16(1): 91-108 Back to browse issues page
Stochastic Comparison of (n-1)-out-of-n Systems from Multiple-Outlier Modified Proportional Hazard Rates Components in terms of Hazard Rate Order
Aliakbar Hosseinzadeh * , Ghobad Barmalzan , Mostafa Sattari
Abstract:   (5263 Views)
In this paper, we discuss the hazard rate order of (n-1)-out-of-n systems arising from two sets of independent multiple-outlier modified proportional hazard rates components. Under certain conditions on the parameters and the sub-majorization order between the sample size vectors, the hazard rate order between the (n-1)-out-of-n systems from multiple-outlier modified proportional hazard rates is established.
Keywords: Hazard Rate Ordering, Multiple-Outlier Modified Proportional Hazard Rates Model, Submajorization Order, (n-1)-out-of-n Systems.
Full-Text [PDF 256 kb]   (2698 Downloads)    
Type of Study: Research | Subject: Probability & Stochastic Processes
Received: 2021/04/23 | Accepted: 2022/09/1 | Published: 2022/08/2
References
1. امینی سرشت، ا. برمال‌زن، ق. ‎(1399)‎‌، ترتیب نسبت درست‌نمایی میان سیستم‌های ‎k‎ از n‎ متشکل از مولفه‌های مقیاس با چندین دورافتاده،‎ مجله علوم آماری، 14‎، ‎335-350‎
2. امینی سرشت، ا. برمال‌زن، ق. ‎(1400)‎‌، مقایسه‌های تصادفی سیستم‌های موازی و سری متشکل از مولفه‌های مقیاس با چندین دورافتاده، ‎مجله علوم آماری، ‎‌پذیرفته شده برای چاپ ‎
3. برمال‌زن، ق. حیدری، ع. معصومی‌فرد، خ.) ‎1394)، مقایسه تصادفی سیستم‌های سری و موازی در مدل مقیاس، مجله علوم آماری، ‎9‎، ‎206-189‎
4. Amini-Seresht‎, ‎E.‎, ‎Qiao‎, ‎J.‎, ‎Zhang‎, ‎Y. ‎and‎ ‎Zhao‎, ‎P‎. ‎(2016), ‎On the Skewness of Order Statistics‎ ‎in Multiple-Outlier PHR Models‎. Metrika‎, ‎79‎, ‎817-836‎. [DOI:10.1007/s00184-016-0579-7]
5. Amini Seresht E, Barmalzan G. (2021), Likelihood Ratio Ordering of k-out-of-n Systems Comprising Multiple-outlier Scale Components, Journal of Statistical Sciences, 14 (2), 335-350. [DOI:10.29252/jss.14.2.1]
6. Amini Seresht E, Barmalzan G. (2022), Stochastic Comparisons of Parallel and Series Systems Comprising Multiple-Outlier Scale Components, Journal of Statistical Sciences, 15 (2), 341-362. [DOI:10.52547/jss.15.2.341]
7. ‎Barmalzan G, Haidari A, Masomifard K. (2016), Stochastic Comparisons of Series and Parallel Systems in the Scale Model, Journal of Statistical Sciences, 9 (2), 189-206.
8. ‎Balakrishnan, N., Barmalzan, G. and Haidari, A. (2018), Modified Proportional Hazard Rates and Proportional Reversed Hazard Rates Models via Marshall-Olkin Distribution and Some Stochastic Comparisons. Journal of the Korean Statistical Society, 47, 127-138.‎‎‎ [DOI:10.1016/j.jkss.2017.10.003]
9. Balakrishnan, N., Haidari, A. and Barmalzan, G. (2015), Improved Ordering Results for Fail-Safe Systems with Exponential Components. Communications in Statistics-Theory and Methods, 44, 2010-2023. [DOI:10.1080/03610926.2012.755204]
10. Balakrishnan‎, ‎N. ‎and‎ ‎Lai‎, ‎C-D‎. ‎(2009), Continuous Bivariate Distributions‎. ‎Second edition‎. ‎Springer‎, ‎New York‎.
11. ‎Barlow, R. E. and Proschan, F. (1996), Mathematical Theory of Reliability. Society for Industrial and Applied Mathematics. Philadelphia. [DOI:10.1137/1.9781611971194]
12. ‎ Cai, X., Zhang, Y. and Zhao, P. (2017), Hazard Rate Ordering of the Second Order Statistics from Multiple-Outlier PHR Samples. Statistics, 51, 615-626.‎ [DOI:10.1080/02331888.2016.1265969]
13. ‎Cordeiro, G.M., Lemonte, A.J. and Ortega, E.M.M. (2014), The Marshall-Olkin Family of Distributions: Mathematical Properties and New Models. Journal of Statistical Theory and Practice, 8, 343-366.‎ [DOI:10.1080/15598608.2013.802659]
14. Cordeiro, G.M. and Lemonte, A.J. (2013), On the Marshall-Olkin Extended Weibull Distribution. Statistical Papers, 54, 333-353.‎ [DOI:10.1007/s00362-012-0431-8]
15. ‎Ghitany, M.E., Al-Awadhi, F.A. and Alkhalfan, L.A. (2007), Marshall-Olkin Extended Lomax Distribution and Its Application to Censored Data. Communications in Statistics-Theory and Methods, 36, 1855-1866.‎ [DOI:10.1080/03610920601126571]
16. Ghitany, M.E. and Kotz. S. (2007), Reliability Properties of Extended Linear Failure Rate Distributions. Probability in the Engineering and Informational Sciences, 21, 441-450.‎ [DOI:10.1017/S0269964807000071]
17. Kirmani, S.N.U.A. and Gupta, R.C. (2001), On the Proportional Odds Model in Survival Analysis. Annals of the Institute of Statistical Mathematics, 53, 203-216. [DOI:10.1023/A:1012458303498]
18. Marshall, A.W. and Olkin, I. (1997), A New Method of Adding a Parameter to a Family of Distributions with Applications to the Exponential and Weibull Families. Biometrika, 84, 641-652.‎ [DOI:10.1093/biomet/84.3.641]
19. Marshall‎, ‎A.W. ‎and‎ ‎Olkin‎, ‎I‎. ‎(2007), Life Distributions. ‎Springer‎, ‎New York‎.
20. Marshall‎, ‎A.W.‎, ‎Olkin‎, ‎I. ‎and‎ ‎Arnold‎, ‎B.C‎. ‎(2011), Inequalities‎: ‎Theory of Majorization and Its Applications. Springer‎, ‎New York.
21. Muller‎, ‎A. ‎and‎ ‎Stoyan‎, ‎D‎. ‎(2002), Comparison Methods‎ for Stochastic Models and Risks. John Wiley & Sons‎, ‎New York‎.
22. Nanda, A.K. and Das, S. (2013), Some Ageing Properties of Marshall-Olkin Extended Distribution. International Journal of Mathematics and Statistics, 13, 93-107.‎‎‎
23. Shaked‎, ‎M. ‎and‎ ‎Shanthikumar‎, ‎J.G‎. ‎(2007), Stochastic Orders. Springer‎, ‎New York‎. [DOI:10.1007/978-0-387-34675-5]
24. Zhang, Y., Amini-Seresht, E. ‎and‎ Zhao, P. (2019), On Fail-Safe Systems under Random Shocks. Applied Stochastic Models in Business and Industry, 35, 591-602. [DOI:10.1002/asmb.2349]
25. Zhao‎, ‎P.‎ and ‎Balakrishnan‎, ‎N‎. ‎(2012), ‎Stochastic Comparisons of Largest Order Statistics from Multiple-Outlier‎ Exponential Models‎, ‎Probability in the Engineering and Informational Sciences‎, ‎26‎, ‎159-182‎. [DOI:10.1017/S0269964811000313]
26. Zhao‎, ‎P. ‎and‎ ‎Balakrishnan‎, ‎N‎. ‎(2015), ‎Comparisons of Largest Order Statistics from Multiple-Outlier Gamma‎ Models‎, ‎Methodology and Computing in Applied Probability, ‎17‎, ‎617-645‎. [DOI:10.1007/s11009-013-9377-0]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hosseinzadeh A, Barmalzan G, Sattari M. Stochastic Comparison of (n-1)-out-of-n Systems from Multiple-Outlier Modified Proportional Hazard Rates Components in terms of Hazard Rate Order. JSS 2022; 16 (1) :91-108
URL: http://jss.irstat.ir/article-1-764-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 1 (9-2022) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.11 seconds with 45 queries by YEKTAWEB 4722