[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Ethics Considerations::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing and Abstracting



 
..
Social Media

..
Licenses
Creative Commons License
This Journal is licensed under a Creative Commons Attribution NonCommercial 4.0
International License
(CC BY-NC 4.0).
 
..
Similarity Check Systems


..
:: Volume 17, Issue 1 (9-2023) ::
JSS 2023, 17(1): 0-0 Back to browse issues page
Reliability Estimation of the Stress-Strength Model in Coherent Systems Based on Exponential Distribution
Ali Rostami * , Mohammad Khanjari sadegh , Mohammad Khorashadizadeh
Abstract:   (1301 Views)
This article considers the stress-strength reliability of a coherent system in the state of stress at the component level. The coherent series, parallel and radar systems are investigated. For 2-component series or parallel systems and radar systems, this reliability based on Exponential distribution is estimated by maximum likelihood, uniformly minimum variance unbiased and Bayes methods. Also, simulation studies have been done to check estimators' performance, and real data are analyzed.
 
Keywords: Reliability, Stress-­Strength Model, Maximum Likelihood Estimation, Uniformly Minimum Variance Unbiased Estimation, Bayes Estimation.
Full-Text [PDF 276 kb]   (1013 Downloads)    
Type of Study: Research | Subject: Reliability
Received: 2023/01/16 | Accepted: 2023/09/1 | Published: 2023/07/11
References
1. Senjari Farsipour, N. and Riahi, H. (2012), Likelihood and Bayesian Inference of the Stress-Strength Reliability Based on Record Values from Proportional and Proportional Reversed Hazard Rate Models, Journal of Statistical Sciences, 7, 2, 207-232.
2. Shadrokh, A. and Yaghoobzadeh Shahrastani, S. (2018), Estimating E-Bayesian and Hierarchical Bayesian of Stress-Strength Parameter in Rayleigh Distribution under LINEX Loss Function, Journal of Statistical Sciences, 13, 2, 483-496. [DOI:10.29252/jss.13.2.483]
3. Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Pages 556, 558 and 559).
4. Alamri, O. A., Abd ElRaouf, M. M., Ismail, E. A., Almaspoor, Z., Alsaedi, B. S. O.
5. Khosa, S. K. and Yusuf, M. (2021), Estimate Stress-Strength Reliability Model Using Rayleigh and Half-Normal Distribution, Computational Intelligence and Neuroscience, Article ID 7653581, (10 pages). [DOI:10.1155/2021/7653581] [PMID] []
6. Barlow, R. E. and Proschan, F. (1971), Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New york.
7. Bhattacharya, D. and Roychowdhury, S. (2013), Reliability of a Coherent System in a Multicomponent Stress-Strength Model, American Journal of Mathematical and Management Sciences, 32(1), 4052.
8. Bhattacharyya, G. K. and Johnson, R. A. (1974), Estimation of Reliability in a Multicomponent Stress-Strength Model, Journal of the American Statistical Association, 69, 966970. [DOI:10.2307/2286173]
9. Birnbaum, Z. W. (1956), On a Use of Mann-Whitney Statistics, Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1, 1317.
10. Dewanji, A. and Rao, T. S. (2001), On System Reliability under Stress-Strength Modeling, Communications in Statistics Theory and Methods, 30(6), 11851196. [DOI:10.1081/STA-100104358]
11. Eryilmaz, S. (2010), On System Reliability in Stress-Strength Setup, Statistics and Probability Letters, 80, 834-839. [DOI:10.1016/j.spl.2010.01.017]
12. Hassan, A., Almanjahie, I. M., AlOmari, A. I., Alzoubi, L. and Alzoubi. H. F. (2023), Stress-Strength Modeling Using Median Ranked Set Sampling Estimation, Simulation, and Application, Mathematics, 1(2), 318. [DOI:10.3390/math11020318]
13. Hemati, A., Khodadadi, Z., Zare, K. and Jafarpour, H. (2022), Bayesian and Classical Estimation of Strength-Stress Reliability for Gompertz Distribution Based on Upper Record Values, Journal of Mathematical Extension, 16(7), 5, 127.
14. Jana, N. and Bera, S. (2022), Estimation of Parameters of Inverse Weibull Distribution and Application to Multicomponent Stress-Strength Model, Journal of Applied Statistic, 49(1), 169-194. [DOI:10.1080/02664763.2020.1803815] [PMID] []
15. Jovanovic, M., Milosevic, B., Obradovic, M. and Vidovic, Z. (2021), Inference on Reliability of Stress-Strength Model with Peng Yan Extended Weibull Distributions, Filomat, 35(6), 1927-1968. [DOI:10.2298/FIL2106927J]
16. Khan, M. J. S. and Khatoon, B. (2019), Statistical Inferences of R = P(X < Y) for Exponential Distribution Based on Generalized Order Statistics, Annals of Data Science, 7, 525545. [DOI:10.1007/s40745-019-00207-6]
17. Kohansal, A., Gonzalez, C. J. P. and Fernandez, A. J. (2023), Multicomponent Reliability Inference in Modified Weibull Extension Distribution and Progressive Censoring Scheme, Bulletin of the Malaysian Mathematical Sciences Society, 46(2), 61. [DOI:10.1007/s40840-022-01453-3] [PMID] []
18. Kotz, S., Lumelskii, Y. and Pensky, M. (2003), The Stress-Strength Model and Its Generalizations, World Scientific, Singapore. [DOI:10.1142/9789812564511]
19. Lio, Y., Tsai, T. R., Wang, L. and Tejada, I. P. C. (2022) Inferences of the Multicomponent Stress-Strength Reliability for Burr XII Distributions, Mathematics, 10, 114, 2478. [DOI:10.3390/math10142478]
20. Mirjalili, S. M., Torabi, H., Nadeb, H. and Bafekri, S. F. (2016), Stress-Strength Reliability of Exponential Distribution Based on Type I Progressively Hybrid Censored Samples, Journal of Statistcal Research, Iran, 13, 89105. [DOI:10.18869/acadpub.jsri.13.1.5]
21. Rao, G. S. (2013), Estimation of Reliability in Multicomponent Stress-Strength Based on Inverse Exponential Distribution, International Journal of Statistics and Economics, 10(1), 28-37.
22. Shawky, A. I. and Khan, K. (2022), Reliability Estimation in Multicomponent Stress Strength Based on Inverse Weibull Distribution, Processes, 10(2), 226. [DOI:10.3390/pr10020226]
23. Yousef, M. M., Hassan, A. S., Alshanbari, H. M., ElBagoury, A. A. H. and Almetwally, E. M. (2022), Bayesian and Non-Bayesian Analysis of Exponentiated Exponential Stress-Strength Model Based on Generalized Progressive Hybrid Censoring Process, Axioms, 11(9), 455. [DOI:10.3390/axioms11090455]
24. Zhang, L., Xu, A., An, L. and Li, M. (2022), Bayesian Inference of System Reliability for Multicomponent Stress-Strength Model under Marshall Olkin Weibull Distribution, Systems, 10(6), 196. [DOI:10.3390/systems10060196]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rostami A, khanjari sadegh M, khorashadizadeh M. Reliability Estimation of the Stress-Strength Model in Coherent Systems Based on Exponential Distribution. JSS 2023; 17 (1)
URL: http://jss.irstat.ir/article-1-833-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 1 (9-2023) Back to browse issues page
مجله علوم آماری – نشریه علمی پژوهشی انجمن آمار ایران Journal of Statistical Sciences

Persian site map - English site map - Created in 0.07 seconds with 43 queries by YEKTAWEB 4700