1. Senjari Farsipour, N. and Riahi, H. (2012), Likelihood and Bayesian Inference of the Stress-Strength Reliability Based on Record Values from Proportional and Proportional Reversed Hazard Rate Models, Journal of Statistical Sciences, 7, 2, 207-232. 2. Shadrokh, A. and Yaghoobzadeh Shahrastani, S. (2018), Estimating E-Bayesian and Hierarchical Bayesian of Stress-Strength Parameter in Rayleigh Distribution under LINEX Loss Function, Journal of Statistical Sciences, 13, 2, 483-496. [ DOI:10.29252/jss.13.2.483] 3. Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Pages 556, 558 and 559). 4. Alamri, O. A., Abd ElRaouf, M. M., Ismail, E. A., Almaspoor, Z., Alsaedi, B. S. O. 5. Khosa, S. K. and Yusuf, M. (2021), Estimate Stress-Strength Reliability Model Using Rayleigh and Half-Normal Distribution, Computational Intelligence and Neuroscience, Article ID 7653581, (10 pages). [ DOI:10.1155/2021/7653581] [ PMID] [ ] 6. Barlow, R. E. and Proschan, F. (1971), Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New york. 7. Bhattacharya, D. and Roychowdhury, S. (2013), Reliability of a Coherent System in a Multicomponent Stress-Strength Model, American Journal of Mathematical and Management Sciences, 32(1), 4052. 8. Bhattacharyya, G. K. and Johnson, R. A. (1974), Estimation of Reliability in a Multicomponent Stress-Strength Model, Journal of the American Statistical Association, 69, 966970. [ DOI:10.2307/2286173] 9. Birnbaum, Z. W. (1956), On a Use of Mann-Whitney Statistics, Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1, 1317. 10. Dewanji, A. and Rao, T. S. (2001), On System Reliability under Stress-Strength Modeling, Communications in Statistics Theory and Methods, 30(6), 11851196. [ DOI:10.1081/STA-100104358] 11. Eryilmaz, S. (2010), On System Reliability in Stress-Strength Setup, Statistics and Probability Letters, 80, 834-839. [ DOI:10.1016/j.spl.2010.01.017] 12. Hassan, A., Almanjahie, I. M., AlOmari, A. I., Alzoubi, L. and Alzoubi. H. F. (2023), Stress-Strength Modeling Using Median Ranked Set Sampling Estimation, Simulation, and Application, Mathematics, 1(2), 318. [ DOI:10.3390/math11020318] 13. Hemati, A., Khodadadi, Z., Zare, K. and Jafarpour, H. (2022), Bayesian and Classical Estimation of Strength-Stress Reliability for Gompertz Distribution Based on Upper Record Values, Journal of Mathematical Extension, 16(7), 5, 127. 14. Jana, N. and Bera, S. (2022), Estimation of Parameters of Inverse Weibull Distribution and Application to Multicomponent Stress-Strength Model, Journal of Applied Statistic, 49(1), 169-194. [ DOI:10.1080/02664763.2020.1803815] [ PMID] [ ] 15. Jovanovic, M., Milosevic, B., Obradovic, M. and Vidovic, Z. (2021), Inference on Reliability of Stress-Strength Model with Peng Yan Extended Weibull Distributions, Filomat, 35(6), 1927-1968. [ DOI:10.2298/FIL2106927J] 16. Khan, M. J. S. and Khatoon, B. (2019), Statistical Inferences of R = P(X < Y) for Exponential Distribution Based on Generalized Order Statistics, Annals of Data Science, 7, 525545. [ DOI:10.1007/s40745-019-00207-6] 17. Kohansal, A., Gonzalez, C. J. P. and Fernandez, A. J. (2023), Multicomponent Reliability Inference in Modified Weibull Extension Distribution and Progressive Censoring Scheme, Bulletin of the Malaysian Mathematical Sciences Society, 46(2), 61. [ DOI:10.1007/s40840-022-01453-3] [ PMID] [ ] 18. Kotz, S., Lumelskii, Y. and Pensky, M. (2003), The Stress-Strength Model and Its Generalizations, World Scientific, Singapore. [ DOI:10.1142/9789812564511] 19. Lio, Y., Tsai, T. R., Wang, L. and Tejada, I. P. C. (2022) Inferences of the Multicomponent Stress-Strength Reliability for Burr XII Distributions, Mathematics, 10, 114, 2478. [ DOI:10.3390/math10142478] 20. Mirjalili, S. M., Torabi, H., Nadeb, H. and Bafekri, S. F. (2016), Stress-Strength Reliability of Exponential Distribution Based on Type I Progressively Hybrid Censored Samples, Journal of Statistcal Research, Iran, 13, 89105. [ DOI:10.18869/acadpub.jsri.13.1.5] 21. Rao, G. S. (2013), Estimation of Reliability in Multicomponent Stress-Strength Based on Inverse Exponential Distribution, International Journal of Statistics and Economics, 10(1), 28-37. 22. Shawky, A. I. and Khan, K. (2022), Reliability Estimation in Multicomponent Stress Strength Based on Inverse Weibull Distribution, Processes, 10(2), 226. [ DOI:10.3390/pr10020226] 23. Yousef, M. M., Hassan, A. S., Alshanbari, H. M., ElBagoury, A. A. H. and Almetwally, E. M. (2022), Bayesian and Non-Bayesian Analysis of Exponentiated Exponential Stress-Strength Model Based on Generalized Progressive Hybrid Censoring Process, Axioms, 11(9), 455. [ DOI:10.3390/axioms11090455] 24. Zhang, L., Xu, A., An, L. and Li, M. (2022), Bayesian Inference of System Reliability for Multicomponent Stress-Strength Model under Marshall Olkin Weibull Distribution, Systems, 10(6), 196. [ DOI:10.3390/systems10060196]
|